Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

You have many friends and very few living enemies.


sci / sci.math.symbolic / Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS

SubjectAuthor
* Re: Estimating the time required to compute an integral using Trager's algorithmNasser M. Abbasi
`* Re: Estimating the time required to compute an integral using Trager's algorithmSam Blake
 `* Re: Estimating the time required to compute an integral using Trager's algorithmNasser M. Abbasi
  `- Re: Estimating the time required to compute an integral usingTrager's algorithmclicliclic@freenet.de

1
Subject: Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS
From: Nasser M. Abbasi
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 05:48 UTC
References: 1
X-Received: by 2002:a05:620a:891:b0:768:421b:a142 with SMTP id b17-20020a05620a089100b00768421ba142mr27855qka.4.1699940881033;
Mon, 13 Nov 2023 21:48:01 -0800 (PST)
X-Received: by 2002:a65:6288:0:b0:5bd:bd07:559c with SMTP id
f8-20020a656288000000b005bdbd07559cmr315751pgv.4.1699940880720; Mon, 13 Nov
2023 21:48:00 -0800 (PST)
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!eternal-september.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.math.symbolic
Date: Mon, 13 Nov 2023 21:48:00 -0800 (PST)
In-Reply-To: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2001:558:6014:76:80fa:a51a:87b7:ba7a;
posting-account=YqIC9AoAAADap7NvyM7RBldP6UMj5cTQ
NNTP-Posting-Host: 2001:558:6014:76:80fa:a51a:87b7:ba7a
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
Subject: Re: Estimating the time required to compute an integral using
Trager's algorithm in FriCAS
From: nma%12000.org@gtempaccount.com (Nasser M. Abbasi)
Injection-Date: Tue, 14 Nov 2023 05:48:01 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 15994
View all headers

On Monday, November 13, 2023 at 5:49:22 PM UTC-6, Sam Blake wrote:
> Hi All,
>
> Is there any way to a priori estimate of the time it will take the Risch-Trager-Bronstein algorithm to compute the integral of
>
> (1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4))?
>
> I left it for 30 minutes and it was still crunching away...

On what system do you mean? in V 13.3 Mathematica solves it in 2.3 seconds

In[1]:= Integrate[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
Out[1]= {2.375,(1/(2^(3/4) (51+36 Sqrt[2])^(1/8) (x^3 (-1+x^2))^(1/4)))x^(3/4) (-1+x^2)^(1/4) (ArcTan[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTan[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])]+ArcTanh[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTanh[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])])}

Rubi 4.17.3 solves it in 0.35 seconds, but in terms of special functions

In[3]:= Int[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
Out[3]= {0.359375,(4 (3 I+Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1-I Sqrt[3]))])/(3 (I+Sqrt[3]) (-x^3+x^5)^(1/4))+(4 (3 I-Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1+I Sqrt[3]))])/(3 (I-Sqrt[3]) (-x^3+x^5)^(1/4))}

>
> It takes my package 24 seconds on my old laptop
>
> In[22299]:= IntegrateAlgebraic[(1 - x^4)/((x^4 + x^2 + 1) (x^5 - x^3)^(1/4)), x] // Timing
>
> Out[22299]= {23.9914, -(((1/3 (17 + 12 Sqrt[2]))^(1/8)
> ArcTan[(
> 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> 3 Sqrt[2 + 2 Sqrt[2]] x - 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> 2^(3/4)) + ((1/3 (17 + 12 Sqrt[2]))^(1/8)
> ArcTan[(
> 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> 3 Sqrt[2 + 2 Sqrt[2]] x + 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> 2^(3/4) -
> ArcTan[(-2^(1/4) (3/(17 + 12 Sqrt[2]))^(1/8) x^2 + (-3 x^2 +
> 3^(3/4) (17 + 12 Sqrt[2])^(1/4) Sqrt[-x^3 + x^5])/(
> 2^(1/4) 3^(7/8) (17 + 12 Sqrt[2])^(1/8)))/(
> x (-x^3 + x^5)^(1/4))]/(2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) +
> ArcTanh[(
> 3 (17/8748 + Sqrt[2]/729)^(1/8) x^2 +
> 3^(3/4) (17/8748 + Sqrt[2]/729)^(1/8) Sqrt[-x^3 + x^5])/(
> x (-x^3 + x^5)^(1/4))]/(
> 2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) + ((1/3 (17 + 12 Sqrt[2]))^(
> 1/8) ArcTanh[(((3/(17 + 12 Sqrt[2]))^(1/8) x^2)/2^(1/4) +
> Sqrt[-x^3 + x^5]/(2^(1/4) (3 (17 + 12 Sqrt[2]))^(1/8)))/(
> x (-x^3 + x^5)^(1/4))])/2^(3/4)}
>
> Cheers,
>
> Sam

Fricas 1.3.9 does it in less than 2 minutes and gives this

(3) -> ii:=integrate((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x);
(4) -> unparse(ii::InputForm)

"((-2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(
1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^
3+654*x^2+(-264)*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2
+(-654)*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-26
4)*x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654
*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-264)*x^5+(
-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-65
4)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x
^6+x^4+x^2))+(2*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/
8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^3+
654*x^2+(-264)*x)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2+(-654)*x)*((
-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((264*x^4+654*x^3+(-264)*x^2)*
((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^
(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)
*x^2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*
((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))+((-2)*(-1)^(1/8)*(3^(1/8))^7*log(
(((264*x^2+654*x+(-264))*((-1)^(1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*(
(x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^3+(-654)*x^2+264*x)*((-1)^(1/8))^3*(3^(1/8
))^5+((-654)*x^3+792*x^2+654*x)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4)
)^2+((264*x^4+654*x^3+(-264)*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*
x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-
264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-654
)*x^5+660*x^4+654*x^3+(-132)*x^2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))
+(2*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/8
))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^
3+(-654)*x^2+264*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+((-654)*x^3+792*x^2
+654*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-264)*
x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654*x^
2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*
x^4+(-264)*x^3+(-109)*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5
+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+
x^4+x^2))+(((-1)^(1/2)+(-1))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2
+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(
-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-
264)*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792*x^2+654*x)*(-1)^
(1/2)+((-654)*x^3+792*x^2+654*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*
x^3)^(1/4))^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^
(1/8))^6+(1308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8
))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^
2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(
1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/
2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3
^(1/8))^3))/(x^6+x^4+x^2))+(((-1)^(1/2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log
(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+
1308))*((x^5+(-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+((-26
4)*x^3+(-654)*x^2+264*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792
*x^2+654*x)*(-1)^(1/2)+(654*x^3+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*
3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*x^3+(-528)*x^2)*(-1)^(1/2)*(
(-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1308*x^2)*(-1)^(1/2)*((-1)^(1
/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)
*x^3+(-109)*x^2)*(-1)^(1/2)+((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2
))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-1
32)*x^2)*(-1)^(1/2)+((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)
^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+(((-1)*(-1)^(1/2)+(-1))*(-1)^(
1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(
1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-264)*x^3+(-6
54)*x^2+264*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-264)*x))*((-1)^(1/8))^3*2^(1/2)*
(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+((-654)*x^3+792*x^2+654
*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*
x^3+(-528)*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1
308*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((109*x
^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-54
5)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+((132*x^6+654*x^5+(-6
60)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3
+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+((-1)*(-1)^(1/
2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(
1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-
264)*x^3+(-654)*x^2+264*x)*(-1)^(1/2)+((-264)*x^3+(-654)*x^2+264*x))*((-1)^(1
/8))^3*2^(1/2)*(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+(654*x^3
+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))
^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+(1
308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+
(-1)*x^3)^(1/4)+(((109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+
((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/
8))^7+((132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+((-132)*x^6
+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))
/(x^6+x^4+x^2)))))))))/24"

Maple does in less than 3 seconds also but gives result with lots of RootOf

anti:=int((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x,method='trager'):
lprint(anti)
1/6*RootOf(_Z^8+2187)*ln(-108*(16*RootOf(_Z^8+2187)^9*x^4-24*RootOf(_Z^8+2187)^
9*x^3-16*RootOf(_Z^8+2187)^9*x^2+54*RootOf(_Z^8+2187)^7*(x^5-x^3)^(1/2)*x+162*
RootOf(_Z^8+2187)^6*(x^5-x^3)^(1/4)*x^2+1350*RootOf(_Z^8+2187)^5*x^4+243*RootOf
(_Z^8+2187)^5*x^3-1350*RootOf(_Z^8+2187)^5*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^
3)^(3/4)+24300*RootOf(_Z^8+2187)^3*(x^5-x^3)^(1/2)*x+72900*RootOf(_Z^8+2187)^2*
(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^8+2187)*x^4+56862*RootOf(_Z^8+2187)*x^3-\
28431*RootOf(_Z^8+2187)*x^2-39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2
*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-81
*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*ln(108*(16*RootOf(_Z^8+2187)^8*RootOf
(_Z^2+RootOf(_Z^8+2187)^2)*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+
2187)^8*x^3-16*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^8*x^2-54*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^6*x+1350*
RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+162*RootOf(_Z^8+2187)^
6*(x^5-x^3)^(1/4)*x^2+243*RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
x^3-1350*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^4*x^2-8100*RootOf(
_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(
1/2)*RootOf(_Z^8+2187)^2*x+28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+72900*
RootOf(_Z^8+2187)^2*(x^5-x^3)^(1/4)*x^2+56862*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^2+39366*(x^5-x^3)^(3/4))/x^2/(
RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2
*RootOf(_Z^8+2187)^4-81*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*ln(-108*(16*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^3-16*RootOf(_Z^2+RootOf
(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^2+54*RootOf
(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^5*RootOf(_Z^2+
RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-162*RootOf(_Z^2+RootOf(_Z
^8+2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-1350*RootOf(_Z^2+RootOf(_Z^
8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^4*x^4-243*RootOf(_Z
^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3+
1350*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^
8+2187)^4*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf
(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x+72900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^4+56862*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+
2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8
+2187)^4+81*x))+1/13122*RootOf(_Z^8+2187)^7*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*ln(-108*(26*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^11*x^4-39*RootOf(_Z^8+2187)^11*RootOf(
_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8
+2187)^2))*x^3-26*RootOf(_Z^8+2187)^11*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(
_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+243*RootOf(_Z^2+
RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187
)^2))*RootOf(_Z^8+2187)^7*x^4-4050*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2
+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^3-\
243*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^2+4374*(x^5-x^3)^(1/2)*RootOf(_Z^8+
2187)^6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-52488
*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^4+13122*RootOf(_Z^2+RootOf(_Z^8+
2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-104976*RootOf(_Z^8+2187)^3*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*x^3+52488*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+
RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^2+
656100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-1968300*(x^5-x^3)^(1/2)*RootOf(_Z^8+
2187)^2*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-\
5904900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+
3188646*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x
+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+81*x))


Click here to read the complete article
Subject: Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS
From: Sam Blake
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 20:45 UTC
References: 1 2
X-Received: by 2002:ad4:42a1:0:b0:670:e7cd:665b with SMTP id e1-20020ad442a1000000b00670e7cd665bmr88843qvr.0.1699994705585;
Tue, 14 Nov 2023 12:45:05 -0800 (PST)
X-Received: by 2002:a65:6702:0:b0:5bd:579:c5bb with SMTP id
u2-20020a656702000000b005bd0579c5bbmr917880pgf.4.1699994705153; Tue, 14 Nov
2023 12:45:05 -0800 (PST)
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!eternal-september.org!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 12:45:04 -0800 (PST)
In-Reply-To: <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=110.143.17.66; posting-account=wlWA4gkAAABfPzIzZZgzF-hX5pK428zY
NNTP-Posting-Host: 110.143.17.66
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com> <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <bda3de2c-6ed3-4b5e-95fa-13e7cb5138b3n@googlegroups.com>
Subject: Re: Estimating the time required to compute an integral using
Trager's algorithm in FriCAS
From: samuel.thomas.blake@gmail.com (Sam Blake)
Injection-Date: Tue, 14 Nov 2023 20:45:05 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 373
View all headers

On Tuesday, November 14, 2023 at 4:48:02 PM UTC+11, Nasser M. Abbasi wrote:
> On Monday, November 13, 2023 at 5:49:22 PM UTC-6, Sam Blake wrote:
> > Hi All,
> >
> > Is there any way to a priori estimate of the time it will take the Risch-Trager-Bronstein algorithm to compute the integral of
> >
> > (1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4))?
> >
> > I left it for 30 minutes and it was still crunching away...
> On what system do you mean? in V 13.3 Mathematica solves it in 2.3 seconds
>
> In[1]:= Integrate[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
> Out[1]= {2.375,(1/(2^(3/4) (51+36 Sqrt[2])^(1/8) (x^3 (-1+x^2))^(1/4)))x^(3/4) (-1+x^2)^(1/4) (ArcTan[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTan[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])]+ArcTanh[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTanh[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])])}
>
> Rubi 4.17.3 solves it in 0.35 seconds, but in terms of special functions
>
> In[3]:= Int[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
> Out[3]= {0.359375,(4 (3 I+Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1-I Sqrt[3]))])/(3 (I+Sqrt[3]) (-x^3+x^5)^(1/4))+(4 (3 I-Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1+I Sqrt[3]))])/(3 (I-Sqrt[3]) (-x^3+x^5)^(1/4))}
> >
> > It takes my package 24 seconds on my old laptop
> >
> > In[22299]:= IntegrateAlgebraic[(1 - x^4)/((x^4 + x^2 + 1) (x^5 - x^3)^(1/4)), x] // Timing
> >
> > Out[22299]= {23.9914, -(((1/3 (17 + 12 Sqrt[2]))^(1/8)
> > ArcTan[(
> > 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> > 3 Sqrt[2 + 2 Sqrt[2]] x - 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> > 2^(3/4)) + ((1/3 (17 + 12 Sqrt[2]))^(1/8)
> > ArcTan[(
> > 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> > 3 Sqrt[2 + 2 Sqrt[2]] x + 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> > 2^(3/4) -
> > ArcTan[(-2^(1/4) (3/(17 + 12 Sqrt[2]))^(1/8) x^2 + (-3 x^2 +
> > 3^(3/4) (17 + 12 Sqrt[2])^(1/4) Sqrt[-x^3 + x^5])/(
> > 2^(1/4) 3^(7/8) (17 + 12 Sqrt[2])^(1/8)))/(
> > x (-x^3 + x^5)^(1/4))]/(2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) +
> > ArcTanh[(
> > 3 (17/8748 + Sqrt[2]/729)^(1/8) x^2 +
> > 3^(3/4) (17/8748 + Sqrt[2]/729)^(1/8) Sqrt[-x^3 + x^5])/(
> > x (-x^3 + x^5)^(1/4))]/(
> > 2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) + ((1/3 (17 + 12 Sqrt[2]))^(
> > 1/8) ArcTanh[(((3/(17 + 12 Sqrt[2]))^(1/8) x^2)/2^(1/4) +
> > Sqrt[-x^3 + x^5]/(2^(1/4) (3 (17 + 12 Sqrt[2]))^(1/8)))/(
> > x (-x^3 + x^5)^(1/4))])/2^(3/4)}
> >
> > Cheers,
> >
> > Sam
> Fricas 1.3.9 does it in less than 2 minutes and gives this
>
> (3) -> ii:=integrate((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x);
> (4) -> unparse(ii::InputForm)
>
> "((-2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(
> 1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^
> 3+654*x^2+(-264)*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2
> +(-654)*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-26
> 4)*x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654
> *x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-264)*x^5+(
> -545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-65
> 4)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x
> ^6+x^4+x^2))+(2*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/
> 8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^3+
> 654*x^2+(-264)*x)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2+(-654)*x)*((
> -1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((264*x^4+654*x^3+(-264)*x^2)*
> ((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^
> (1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)
> *x^2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*
> ((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))+((-2)*(-1)^(1/8)*(3^(1/8))^7*log(
> (((264*x^2+654*x+(-264))*((-1)^(1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*(
> (x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^3+(-654)*x^2+264*x)*((-1)^(1/8))^3*(3^(1/8
> ))^5+((-654)*x^3+792*x^2+654*x)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4)
> )^2+((264*x^4+654*x^3+(-264)*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*
> x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-
> 264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-654
> )*x^5+660*x^4+654*x^3+(-132)*x^2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))
> +(2*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/8
> ))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^
> 3+(-654)*x^2+264*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+((-654)*x^3+792*x^2
> +654*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-264)*
> x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654*x^
> 2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*
> x^4+(-264)*x^3+(-109)*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5
> +(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+
> x^4+x^2))+(((-1)^(1/2)+(-1))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2
> +(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(
> -1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-
> 264)*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792*x^2+654*x)*(-1)^
> (1/2)+((-654)*x^3+792*x^2+654*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*
> x^3)^(1/4))^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^
> (1/8))^6+(1308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8
> ))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^
> 2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(
> 1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/
> 2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3
> ^(1/8))^3))/(x^6+x^4+x^2))+(((-1)^(1/2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log
> (((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+
> 1308))*((x^5+(-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+((-26
> 4)*x^3+(-654)*x^2+264*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792
> *x^2+654*x)*(-1)^(1/2)+(654*x^3+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*
> 3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*x^3+(-528)*x^2)*(-1)^(1/2)*(
> (-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1308*x^2)*(-1)^(1/2)*((-1)^(1
> /8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)
> *x^3+(-109)*x^2)*(-1)^(1/2)+((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2
> ))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-1
> 32)*x^2)*(-1)^(1/2)+((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)
> ^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+(((-1)*(-1)^(1/2)+(-1))*(-1)^(
> 1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(
> 1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-264)*x^3+(-6
> 54)*x^2+264*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-264)*x))*((-1)^(1/8))^3*2^(1/2)*
> (3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+((-654)*x^3+792*x^2+654
> *x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*
> x^3+(-528)*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1
> 308*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((109*x
> ^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-54
> 5)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+((132*x^6+654*x^5+(-6
> 60)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3
> +132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+((-1)*(-1)^(1/
> 2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(
> 1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-
> 264)*x^3+(-654)*x^2+264*x)*(-1)^(1/2)+((-264)*x^3+(-654)*x^2+264*x))*((-1)^(1
> /8))^3*2^(1/2)*(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+(654*x^3
> +(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))
> ^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+(1
> 308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+
> (-1)*x^3)^(1/4)+(((109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+
> ((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/
> 8))^7+((132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+((-132)*x^6
> +(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))
> /(x^6+x^4+x^2)))))))))/24"
>
>
> Maple does in less than 3 seconds also but gives result with lots of RootOf
>
> anti:=int((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x,method='trager'):
> lprint(anti)
> 1/6*RootOf(_Z^8+2187)*ln(-108*(16*RootOf(_Z^8+2187)^9*x^4-24*RootOf(_Z^8+2187)^
> 9*x^3-16*RootOf(_Z^8+2187)^9*x^2+54*RootOf(_Z^8+2187)^7*(x^5-x^3)^(1/2)*x+162*
> RootOf(_Z^8+2187)^6*(x^5-x^3)^(1/4)*x^2+1350*RootOf(_Z^8+2187)^5*x^4+243*RootOf
> (_Z^8+2187)^5*x^3-1350*RootOf(_Z^8+2187)^5*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^
> 3)^(3/4)+24300*RootOf(_Z^8+2187)^3*(x^5-x^3)^(1/2)*x+72900*RootOf(_Z^8+2187)^2*
> (x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^8+2187)*x^4+56862*RootOf(_Z^8+2187)*x^3-\
> 28431*RootOf(_Z^8+2187)*x^2-39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2
> *RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-81
> *x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*ln(108*(16*RootOf(_Z^8+2187)^8*RootOf
> (_Z^2+RootOf(_Z^8+2187)^2)*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+
> 2187)^8*x^3-16*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^8*x^2-54*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^6*x+1350*
> RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+162*RootOf(_Z^8+2187)^
> 6*(x^5-x^3)^(1/4)*x^2+243*RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> x^3-1350*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^4*x^2-8100*RootOf(
> _Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(
> 1/2)*RootOf(_Z^8+2187)^2*x+28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+72900*
> RootOf(_Z^8+2187)^2*(x^5-x^3)^(1/4)*x^2+56862*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^2+39366*(x^5-x^3)^(3/4))/x^2/(
> RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2
> *RootOf(_Z^8+2187)^4-81*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*ln(-108*(16*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^3-16*RootOf(_Z^2+RootOf
> (_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^2+54*RootOf
> (_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^5*RootOf(_Z^2+
> RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-162*RootOf(_Z^2+RootOf(_Z
> ^8+2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-1350*RootOf(_Z^2+RootOf(_Z^
> 8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^4*x^4-243*RootOf(_Z
> ^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3+
> 1350*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^
> 8+2187)^4*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf
> (_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x+72900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^4+56862*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+
> 2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8
> +2187)^4+81*x))+1/13122*RootOf(_Z^8+2187)^7*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*ln(-108*(26*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^11*x^4-39*RootOf(_Z^8+2187)^11*RootOf(
> _Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8
> +2187)^2))*x^3-26*RootOf(_Z^8+2187)^11*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(
> _Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+243*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187
> )^2))*RootOf(_Z^8+2187)^7*x^4-4050*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2
> +RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^3-\
> 243*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^2+4374*(x^5-x^3)^(1/2)*RootOf(_Z^8+
> 2187)^6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-52488
> *RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^4+13122*RootOf(_Z^2+RootOf(_Z^8+
> 2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-104976*RootOf(_Z^8+2187)^3*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*x^3+52488*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+
> RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^2+
> 656100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-1968300*(x^5-x^3)^(1/2)*RootOf(_Z^8+
> 2187)^2*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-\
> 5904900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+
> 3188646*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x
> +108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+81*x))
>
> --Nasser


Click here to read the complete article
Subject: Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS
From: Nasser M. Abbasi
Newsgroups: sci.math.symbolic
Organization: A noiseless patient Spider
Date: Wed, 15 Nov 2023 00:46 UTC
References: 1 2 3
Path: eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: nma@12000.org (Nasser M. Abbasi)
Newsgroups: sci.math.symbolic
Subject: Re: Estimating the time required to compute an integral using
Trager's algorithm in FriCAS
Date: Tue, 14 Nov 2023 18:46:15 -0600
Organization: A noiseless patient Spider
Lines: 29
Message-ID: <uj14co$1en6e$1@dont-email.me>
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
<d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
<bda3de2c-6ed3-4b5e-95fa-13e7cb5138b3n@googlegroups.com>
Reply-To: nma@12000.org
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Wed, 15 Nov 2023 00:46:16 -0000 (UTC)
Injection-Info: dont-email.me; posting-host="a2aa191a1f1e039348e8efea7bb21794";
logging-data="1531086"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+lIi8W9a/GPeqJzYmRrK0S"
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:102.0) Gecko/20100101
Thunderbird/102.15.1
Cancel-Lock: sha1:q+B8lRxpJSdPMgi2oRxEFN2h16Y=
In-Reply-To: <bda3de2c-6ed3-4b5e-95fa-13e7cb5138b3n@googlegroups.com>
Content-Language: en-US
View all headers

On 11/14/2023 2:45 PM, Sam Blake wrote:

> I was using FriCAS version 1.3.6, which is still crunching away after 5 minutes. I will update FriCAS on my system.
>

Did you try with setSimplifyDenomsFlag(true)? I always have this on, so forgot to
mention it. This seems to help on many cases.

You can try it online at

https://wiki.fricas.org/SandBox

Going to bottom of page, and typing

\begin{axiom}
setSimplifyDenomsFlag(true)
integrate(sin(x),x)
\end{axiom}

> It appears Mathematica first factors the radicand into x^(3/4) (-1 + x^2)^(1/4), which then requires multiplying the result by a piecewise constant ((x^(3/4)) ((-1 + x^2)^(1/4)) )/(x^3 (-1 + x^2))^(1/4) in order to obtain a valid antiderivative for all x.
>
> Cheers,
>
> Sam
>
>

--Nasser

Subject: Re: Estimating the time required to compute an integral usingTrager's algorithm in FriCAS
From: clicliclic@freenet.d
Newsgroups: sci.math.symbolic
Organization: Killfiles, Unlimited
Date: Thu, 16 Nov 2023 06:41 UTC
References: 1 2 3 4
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!eternal-september.org!nntp-feed.chiark.greenend.org.uk!ewrotcd!news.killfile.org!.POSTED.port-92-200-63-161.dynamic.as20676.net!not-for-mail
From: nobody@nowhere.invalid (clicliclic@freenet.de)
Newsgroups: sci.math.symbolic
Subject: Re: Estimating the time required to compute an integral usingTrager's
algorithm in FriCAS
Date: Thu, 16 Nov 2023 07:41:41 +0100
Organization: Killfiles, Unlimited
Message-ID: <6555B9A5.E08EDBB5@nowhere.invalid>
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
<d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
<bda3de2c-6ed3-4b5e-95fa-13e7cb5138b3n@googlegroups.com> <uj14co$1en6e$1@dont-email.me>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Injection-Info: flea.killfile.org; posting-host="port-92-200-63-161.dynamic.as20676.net:92.200.63.161";
logging-data="2789295"; mail-complaints-to="news@news.killfile.org"
X-Mailer: Mozilla 4.75 [de] (Win98; U)
X-Accept-Language: de
View all headers

"Nasser M. Abbasi" schrieb:
>
> On 11/14/2023 2:45 PM, Sam Blake wrote:
>
> > I was using FriCAS version 1.3.6, which is still crunching away
> > after 5 minutes. I will update FriCAS on my system.
> >
>
> Did you try with setSimplifyDenomsFlag(true)? I always have this on,
> so forgot to mention it. This seems to help on many cases.
>
> You can try it online at
>
> https://wiki.fricas.org/SandBox
>
> Going to bottom of page, and typing
>
> \begin{axiom}
> setSimplifyDenomsFlag(true)
> integrate(sin(x),x)
> \end{axiom}
>
> > It appears Mathematica first factors the radicand into x^(3/4)
> > (-1 + x^2)^(1/4), which then requires multiplying the result by a
> > piecewise constant ((x^(3/4)) ((-1 + x^2)^(1/4)) )/(x^3 (-1 +
> > x^2))^(1/4) in order to obtain a valid antiderivative for all x.
> >

A compact expression for the antiderivative is:

INT((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)), x)
= 3^(7/8)*SQRT(2 - SQRT(2))/6
*ATAN(3^(7/8)*SQRT(2*SQRT(2) + 4)*(3^(1/4)*x^2 - SQRT(x^5 - x^3))
/(6*x*(x^5 - x^3)^(1/4)))
+ 3^(7/8)*SQRT(SQRT(2) + 2)/6
*ATAN(3^(7/8)*SQRT(4 - 2*SQRT(2))*(3^(1/4)*x^2 - SQRT(x^5 - x^3))
/(6*x*(x^5 - x^3)^(1/4)))
+ 3^(7/8)*SQRT(2 - SQRT(2))/6
*ATANH(3^(7/8)*SQRT(2*SQRT(2) + 4)*(SQRT(x^5 - x^3) + 3^(1/4)*x^2)
/(6*x*(x^5 - x^3)^(1/4)))
+ 3^(7/8)*SQRT(SQRT(2) + 2)/6
*ATANH(3^(7/8)*SQRT(4 - 2*SQRT(2))*(SQRT(x^5 - x^3) + 3^(1/4)*x^2)
/(6*x*(x^5 - x^3)^(1/4)))

There is no (17/8748 + SQRT(2)/729)^(1/8) here, no piecewise constant,
no (-1)^(1/2) or (-1)^(1/8), and no RootOf(_Z^8 + 2187).

Martin.

1

rocksolid light 0.9.8
clearnet tor