Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

Q: What's a light-year? A: One-third less calories than a regular year.


sci / sci.math.symbolic / Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS

Subject: Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS
From: Sam Blake
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 20:45 UTC
References: 1 2
X-Received: by 2002:ad4:42a1:0:b0:670:e7cd:665b with SMTP id e1-20020ad442a1000000b00670e7cd665bmr88843qvr.0.1699994705585;
Tue, 14 Nov 2023 12:45:05 -0800 (PST)
X-Received: by 2002:a65:6702:0:b0:5bd:579:c5bb with SMTP id
u2-20020a656702000000b005bd0579c5bbmr917880pgf.4.1699994705153; Tue, 14 Nov
2023 12:45:05 -0800 (PST)
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!eternal-september.org!border-1.nntp.ord.giganews.com!nntp.giganews.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 12:45:04 -0800 (PST)
In-Reply-To: <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=110.143.17.66; posting-account=wlWA4gkAAABfPzIzZZgzF-hX5pK428zY
NNTP-Posting-Host: 110.143.17.66
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com> <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <bda3de2c-6ed3-4b5e-95fa-13e7cb5138b3n@googlegroups.com>
Subject: Re: Estimating the time required to compute an integral using
Trager's algorithm in FriCAS
From: samuel.thomas.blake@gmail.com (Sam Blake)
Injection-Date: Tue, 14 Nov 2023 20:45:05 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Lines: 373
View all headers

On Tuesday, November 14, 2023 at 4:48:02 PM UTC+11, Nasser M. Abbasi wrote:
> On Monday, November 13, 2023 at 5:49:22 PM UTC-6, Sam Blake wrote:
> > Hi All,
> >
> > Is there any way to a priori estimate of the time it will take the Risch-Trager-Bronstein algorithm to compute the integral of
> >
> > (1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4))?
> >
> > I left it for 30 minutes and it was still crunching away...
> On what system do you mean? in V 13.3 Mathematica solves it in 2.3 seconds
>
> In[1]:= Integrate[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
> Out[1]= {2.375,(1/(2^(3/4) (51+36 Sqrt[2])^(1/8) (x^3 (-1+x^2))^(1/4)))x^(3/4) (-1+x^2)^(1/4) (ArcTan[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTan[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])]+ArcTanh[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTanh[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])])}
>
> Rubi 4.17.3 solves it in 0.35 seconds, but in terms of special functions
>
> In[3]:= Int[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
> Out[3]= {0.359375,(4 (3 I+Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1-I Sqrt[3]))])/(3 (I+Sqrt[3]) (-x^3+x^5)^(1/4))+(4 (3 I-Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1+I Sqrt[3]))])/(3 (I-Sqrt[3]) (-x^3+x^5)^(1/4))}
> >
> > It takes my package 24 seconds on my old laptop
> >
> > In[22299]:= IntegrateAlgebraic[(1 - x^4)/((x^4 + x^2 + 1) (x^5 - x^3)^(1/4)), x] // Timing
> >
> > Out[22299]= {23.9914, -(((1/3 (17 + 12 Sqrt[2]))^(1/8)
> > ArcTan[(
> > 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> > 3 Sqrt[2 + 2 Sqrt[2]] x - 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> > 2^(3/4)) + ((1/3 (17 + 12 Sqrt[2]))^(1/8)
> > ArcTan[(
> > 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> > 3 Sqrt[2 + 2 Sqrt[2]] x + 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> > 2^(3/4) -
> > ArcTan[(-2^(1/4) (3/(17 + 12 Sqrt[2]))^(1/8) x^2 + (-3 x^2 +
> > 3^(3/4) (17 + 12 Sqrt[2])^(1/4) Sqrt[-x^3 + x^5])/(
> > 2^(1/4) 3^(7/8) (17 + 12 Sqrt[2])^(1/8)))/(
> > x (-x^3 + x^5)^(1/4))]/(2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) +
> > ArcTanh[(
> > 3 (17/8748 + Sqrt[2]/729)^(1/8) x^2 +
> > 3^(3/4) (17/8748 + Sqrt[2]/729)^(1/8) Sqrt[-x^3 + x^5])/(
> > x (-x^3 + x^5)^(1/4))]/(
> > 2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) + ((1/3 (17 + 12 Sqrt[2]))^(
> > 1/8) ArcTanh[(((3/(17 + 12 Sqrt[2]))^(1/8) x^2)/2^(1/4) +
> > Sqrt[-x^3 + x^5]/(2^(1/4) (3 (17 + 12 Sqrt[2]))^(1/8)))/(
> > x (-x^3 + x^5)^(1/4))])/2^(3/4)}
> >
> > Cheers,
> >
> > Sam
> Fricas 1.3.9 does it in less than 2 minutes and gives this
>
> (3) -> ii:=integrate((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x);
> (4) -> unparse(ii::InputForm)
>
> "((-2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(
> 1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^
> 3+654*x^2+(-264)*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2
> +(-654)*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-26
> 4)*x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654
> *x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-264)*x^5+(
> -545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-65
> 4)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x
> ^6+x^4+x^2))+(2*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/
> 8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^3+
> 654*x^2+(-264)*x)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2+(-654)*x)*((
> -1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((264*x^4+654*x^3+(-264)*x^2)*
> ((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^
> (1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)
> *x^2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*
> ((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))+((-2)*(-1)^(1/8)*(3^(1/8))^7*log(
> (((264*x^2+654*x+(-264))*((-1)^(1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*(
> (x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^3+(-654)*x^2+264*x)*((-1)^(1/8))^3*(3^(1/8
> ))^5+((-654)*x^3+792*x^2+654*x)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4)
> )^2+((264*x^4+654*x^3+(-264)*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*
> x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-
> 264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-654
> )*x^5+660*x^4+654*x^3+(-132)*x^2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))
> +(2*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/8
> ))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^
> 3+(-654)*x^2+264*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+((-654)*x^3+792*x^2
> +654*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-264)*
> x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654*x^
> 2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*
> x^4+(-264)*x^3+(-109)*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5
> +(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+
> x^4+x^2))+(((-1)^(1/2)+(-1))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2
> +(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(
> -1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-
> 264)*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792*x^2+654*x)*(-1)^
> (1/2)+((-654)*x^3+792*x^2+654*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*
> x^3)^(1/4))^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^
> (1/8))^6+(1308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8
> ))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^
> 2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(
> 1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/
> 2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3
> ^(1/8))^3))/(x^6+x^4+x^2))+(((-1)^(1/2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log
> (((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+
> 1308))*((x^5+(-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+((-26
> 4)*x^3+(-654)*x^2+264*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792
> *x^2+654*x)*(-1)^(1/2)+(654*x^3+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*
> 3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*x^3+(-528)*x^2)*(-1)^(1/2)*(
> (-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1308*x^2)*(-1)^(1/2)*((-1)^(1
> /8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)
> *x^3+(-109)*x^2)*(-1)^(1/2)+((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2
> ))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-1
> 32)*x^2)*(-1)^(1/2)+((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)
> ^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+(((-1)*(-1)^(1/2)+(-1))*(-1)^(
> 1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(
> 1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-264)*x^3+(-6
> 54)*x^2+264*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-264)*x))*((-1)^(1/8))^3*2^(1/2)*
> (3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+((-654)*x^3+792*x^2+654
> *x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*
> x^3+(-528)*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1
> 308*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((109*x
> ^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-54
> 5)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+((132*x^6+654*x^5+(-6
> 60)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3
> +132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+((-1)*(-1)^(1/
> 2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(
> 1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-
> 264)*x^3+(-654)*x^2+264*x)*(-1)^(1/2)+((-264)*x^3+(-654)*x^2+264*x))*((-1)^(1
> /8))^3*2^(1/2)*(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+(654*x^3
> +(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))
> ^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+(1
> 308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+
> (-1)*x^3)^(1/4)+(((109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+
> ((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/
> 8))^7+((132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+((-132)*x^6
> +(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))
> /(x^6+x^4+x^2)))))))))/24"
>
>
> Maple does in less than 3 seconds also but gives result with lots of RootOf
>
> anti:=int((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x,method='trager'):
> lprint(anti)
> 1/6*RootOf(_Z^8+2187)*ln(-108*(16*RootOf(_Z^8+2187)^9*x^4-24*RootOf(_Z^8+2187)^
> 9*x^3-16*RootOf(_Z^8+2187)^9*x^2+54*RootOf(_Z^8+2187)^7*(x^5-x^3)^(1/2)*x+162*
> RootOf(_Z^8+2187)^6*(x^5-x^3)^(1/4)*x^2+1350*RootOf(_Z^8+2187)^5*x^4+243*RootOf
> (_Z^8+2187)^5*x^3-1350*RootOf(_Z^8+2187)^5*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^
> 3)^(3/4)+24300*RootOf(_Z^8+2187)^3*(x^5-x^3)^(1/2)*x+72900*RootOf(_Z^8+2187)^2*
> (x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^8+2187)*x^4+56862*RootOf(_Z^8+2187)*x^3-\
> 28431*RootOf(_Z^8+2187)*x^2-39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2
> *RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-81
> *x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*ln(108*(16*RootOf(_Z^8+2187)^8*RootOf
> (_Z^2+RootOf(_Z^8+2187)^2)*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+
> 2187)^8*x^3-16*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^8*x^2-54*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^6*x+1350*
> RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+162*RootOf(_Z^8+2187)^
> 6*(x^5-x^3)^(1/4)*x^2+243*RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> x^3-1350*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^4*x^2-8100*RootOf(
> _Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(
> 1/2)*RootOf(_Z^8+2187)^2*x+28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+72900*
> RootOf(_Z^8+2187)^2*(x^5-x^3)^(1/4)*x^2+56862*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^2+39366*(x^5-x^3)^(3/4))/x^2/(
> RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2
> *RootOf(_Z^8+2187)^4-81*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*ln(-108*(16*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^3-16*RootOf(_Z^2+RootOf
> (_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^2+54*RootOf
> (_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^5*RootOf(_Z^2+
> RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-162*RootOf(_Z^2+RootOf(_Z
> ^8+2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-1350*RootOf(_Z^2+RootOf(_Z^
> 8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^4*x^4-243*RootOf(_Z
> ^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3+
> 1350*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^
> 8+2187)^4*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf
> (_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x+72900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^4+56862*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+
> 2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8
> +2187)^4+81*x))+1/13122*RootOf(_Z^8+2187)^7*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
> RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*ln(-108*(26*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^11*x^4-39*RootOf(_Z^8+2187)^11*RootOf(
> _Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8
> +2187)^2))*x^3-26*RootOf(_Z^8+2187)^11*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(
> _Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+243*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187
> )^2))*RootOf(_Z^8+2187)^7*x^4-4050*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2
> +RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^3-\
> 243*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^2+4374*(x^5-x^3)^(1/2)*RootOf(_Z^8+
> 2187)^6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-52488
> *RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^4+13122*RootOf(_Z^2+RootOf(_Z^8+
> 2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-104976*RootOf(_Z^8+2187)^3*
> RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
> RootOf(_Z^8+2187)^2))*x^3+52488*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+
> RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^2+
> 656100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-1968300*(x^5-x^3)^(1/2)*RootOf(_Z^8+
> 2187)^2*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-\
> 5904900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+
> 3188646*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x
> +108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+81*x))
>
> --Nasser

Thanks Nasser,

I was using FriCAS version 1.3.6, which is still crunching away after 5 minutes. I will update FriCAS on my system.

It appears Mathematica first factors the radicand into x^(3/4) (-1 + x^2)^(1/4), which then requires multiplying the result by a piecewise constant ((x^(3/4)) ((-1 + x^2)^(1/4)) )/(x^3 (-1 + x^2))^(1/4) in order to obtain a valid antiderivative for all x.

Cheers,

Sam

SubjectRepliesAuthor
o Re: Estimating the time required to compute an integral using Trager's algorithm

By: Nasser M. Abbasi on Tue, 14 Nov 2023

3Nasser M. Abbasi

rocksolid light 0.9.8
clearnet tor