Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

BOFH excuse #3: electromagnetic radiation from satellite debris


sci / sci.math.symbolic / Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS

Subject: Re: Estimating the time required to compute an integral using Trager's algorithm in FriCAS
From: Nasser M. Abbasi
Newsgroups: sci.math.symbolic
Date: Tue, 14 Nov 2023 05:48 UTC
References: 1
X-Received: by 2002:a05:620a:891:b0:768:421b:a142 with SMTP id b17-20020a05620a089100b00768421ba142mr27855qka.4.1699940881033;
Mon, 13 Nov 2023 21:48:01 -0800 (PST)
X-Received: by 2002:a65:6288:0:b0:5bd:bd07:559c with SMTP id
f8-20020a656288000000b005bdbd07559cmr315751pgv.4.1699940880720; Mon, 13 Nov
2023 21:48:00 -0800 (PST)
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!eternal-september.org!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.math.symbolic
Date: Mon, 13 Nov 2023 21:48:00 -0800 (PST)
In-Reply-To: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
Injection-Info: google-groups.googlegroups.com; posting-host=2001:558:6014:76:80fa:a51a:87b7:ba7a;
posting-account=YqIC9AoAAADap7NvyM7RBldP6UMj5cTQ
NNTP-Posting-Host: 2001:558:6014:76:80fa:a51a:87b7:ba7a
References: <7df51992-c602-4505-9c90-119d8aabc071n@googlegroups.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <d1c56642-0ae7-4f1e-a78b-15d67f88dbcbn@googlegroups.com>
Subject: Re: Estimating the time required to compute an integral using
Trager's algorithm in FriCAS
From: nma%12000.org@gtempaccount.com (Nasser M. Abbasi)
Injection-Date: Tue, 14 Nov 2023 05:48:01 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 15994
View all headers

On Monday, November 13, 2023 at 5:49:22 PM UTC-6, Sam Blake wrote:
> Hi All,
>
> Is there any way to a priori estimate of the time it will take the Risch-Trager-Bronstein algorithm to compute the integral of
>
> (1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4))?
>
> I left it for 30 minutes and it was still crunching away...

On what system do you mean? in V 13.3 Mathematica solves it in 2.3 seconds

In[1]:= Integrate[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
Out[1]= {2.375,(1/(2^(3/4) (51+36 Sqrt[2])^(1/8) (x^3 (-1+x^2))^(1/4)))x^(3/4) (-1+x^2)^(1/4) (ArcTan[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTan[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(-3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])]+ArcTanh[(2^(1/4) 3^(7/8) x^(1/4) (-1+x^2)^(1/4))/((17+12 Sqrt[2])^(1/8) (3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2]))]+(17+12 Sqrt[2])^(1/4) ArcTanh[(2^(1/4) 3^(7/8) (17+12 Sqrt[2])^(1/8) x^(1/4) (-1+x^2)^(1/4))/(3 Sqrt[x]+3^(3/4) Sqrt[-1+x^2])])}

Rubi 4.17.3 solves it in 0.35 seconds, but in terms of special functions

In[3]:= Int[(1-x^4)/((x^4+x^2+1)*(x^5-x^3)^(1/4)),x]//Timing
Out[3]= {0.359375,(4 (3 I+Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1-I Sqrt[3]))])/(3 (I+Sqrt[3]) (-x^3+x^5)^(1/4))+(4 (3 I-Sqrt[3]) x (1-x^2)^(1/4) AppellF1[1/8,-(3/4),1,9/8,x^2,-((2 x^2)/(1+I Sqrt[3]))])/(3 (I-Sqrt[3]) (-x^3+x^5)^(1/4))}

>
> It takes my package 24 seconds on my old laptop
>
> In[22299]:= IntegrateAlgebraic[(1 - x^4)/((x^4 + x^2 + 1) (x^5 - x^3)^(1/4)), x] // Timing
>
> Out[22299]= {23.9914, -(((1/3 (17 + 12 Sqrt[2]))^(1/8)
> ArcTan[(
> 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> 3 Sqrt[2 + 2 Sqrt[2]] x - 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> 2^(3/4)) + ((1/3 (17 + 12 Sqrt[2]))^(1/8)
> ArcTan[(
> 3 Sqrt[1 + Sqrt[2]] x)/(-3 Sqrt[1 + Sqrt[2]] x +
> 3 Sqrt[2 + 2 Sqrt[2]] x + 2^(3/4) 3^(7/8) (-x^3 + x^5)^(1/4))])/
> 2^(3/4) -
> ArcTan[(-2^(1/4) (3/(17 + 12 Sqrt[2]))^(1/8) x^2 + (-3 x^2 +
> 3^(3/4) (17 + 12 Sqrt[2])^(1/4) Sqrt[-x^3 + x^5])/(
> 2^(1/4) 3^(7/8) (17 + 12 Sqrt[2])^(1/8)))/(
> x (-x^3 + x^5)^(1/4))]/(2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) +
> ArcTanh[(
> 3 (17/8748 + Sqrt[2]/729)^(1/8) x^2 +
> 3^(3/4) (17/8748 + Sqrt[2]/729)^(1/8) Sqrt[-x^3 + x^5])/(
> x (-x^3 + x^5)^(1/4))]/(
> 2^(3/4) (3 (17 + 12 Sqrt[2]))^(1/8)) + ((1/3 (17 + 12 Sqrt[2]))^(
> 1/8) ArcTanh[(((3/(17 + 12 Sqrt[2]))^(1/8) x^2)/2^(1/4) +
> Sqrt[-x^3 + x^5]/(2^(1/4) (3 (17 + 12 Sqrt[2]))^(1/8)))/(
> x (-x^3 + x^5)^(1/4))])/2^(3/4)}
>
> Cheers,
>
> Sam

Fricas 1.3.9 does it in less than 2 minutes and gives this

(3) -> ii:=integrate((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x);
(4) -> unparse(ii::InputForm)

"((-2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(
1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^
3+654*x^2+(-264)*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2
+(-654)*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-26
4)*x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654
*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-264)*x^5+(
-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-65
4)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x
^6+x^4+x^2))+(2*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/
8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+((264*x^3+
654*x^2+(-264)*x)*((-1)^(1/8))^3*(3^(1/8))^5+(654*x^3+(-792)*x^2+(-654)*x)*((
-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((264*x^4+654*x^3+(-264)*x^2)*
((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^
(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)
*x^2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*
((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))+((-2)*(-1)^(1/8)*(3^(1/8))^7*log(
(((264*x^2+654*x+(-264))*((-1)^(1/8))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*(
(x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^3+(-654)*x^2+264*x)*((-1)^(1/8))^3*(3^(1/8
))^5+((-654)*x^3+792*x^2+654*x)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4)
)^2+((264*x^4+654*x^3+(-264)*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+(654*x^4+(-792)*
x^3+(-654)*x^2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((109*x^6+(-
264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/8)*(3^(1/8))^7+((-132)*x^6+(-654
)*x^5+660*x^4+654*x^3+(-132)*x^2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+x^4+x^2))
+(2*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7*log((((264*x^2+654*x+(-264))*((-1)^(1/8
))^4*(3^(1/8))^4+((-654)*x^2+792*x+654))*((x^5+(-1)*x^3)^(1/4))^3+(((-264)*x^
3+(-654)*x^2+264*x)*(-1)^(1/2)*((-1)^(1/8))^3*(3^(1/8))^5+((-654)*x^3+792*x^2
+654*x)*(-1)^(1/2)*((-1)^(1/8))^7*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+(((-264)*
x^4+(-654)*x^3+264*x^2)*((-1)^(1/8))^2*(3^(1/8))^6+((-654)*x^4+792*x^3+654*x^
2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((-109)*x^6+264*x^5+545*
x^4+(-264)*x^3+(-109)*x^2)*(-1)^(1/2)*(-1)^(1/8)*(3^(1/8))^7+(132*x^6+654*x^5
+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)*((-1)^(1/8))^5*(3^(1/8))^3))/(x^6+
x^4+x^2))+(((-1)^(1/2)+(-1))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2
+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(
-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-
264)*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792*x^2+654*x)*(-1)^
(1/2)+((-654)*x^3+792*x^2+654*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*
x^3)^(1/4))^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^
(1/8))^6+(1308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8
))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^
2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(
1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2)*(-1)^(1/
2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3
^(1/8))^3))/(x^6+x^4+x^2))+(((-1)^(1/2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log
(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+
1308))*((x^5+(-1)*x^3)^(1/4))^3+(((264*x^3+654*x^2+(-264)*x)*(-1)^(1/2)+((-26
4)*x^3+(-654)*x^2+264*x))*((-1)^(1/8))^3*2^(1/2)*(3^(1/8))^5+(((-654)*x^3+792
*x^2+654*x)*(-1)^(1/2)+(654*x^3+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*
3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*x^3+(-528)*x^2)*(-1)^(1/2)*(
(-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1308*x^2)*(-1)^(1/2)*((-1)^(1
/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+((((-109)*x^6+264*x^5+545*x^4+(-264)
*x^3+(-109)*x^2)*(-1)^(1/2)+((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2
))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+(((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-1
32)*x^2)*(-1)^(1/2)+((-132)*x^6+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)
^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+(((-1)*(-1)^(1/2)+(-1))*(-1)^(
1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(1/8))^4*(3^(
1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-264)*x^3+(-6
54)*x^2+264*x)*(-1)^(1/2)+(264*x^3+654*x^2+(-264)*x))*((-1)^(1/8))^3*2^(1/2)*
(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+((-654)*x^3+792*x^2+654
*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))^2+((528*x^4+1308*
x^3+(-528)*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+((-1308)*x^4+1584*x^3+1
308*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+(-1)*x^3)^(1/4)+(((109*x
^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+(109*x^6+(-264)*x^5+(-54
5)*x^4+264*x^3+109*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7+((132*x^6+654*x^5+(-6
60)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+(132*x^6+654*x^5+(-660)*x^4+(-654)*x^3
+132*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))/(x^6+x^4+x^2))+((-1)*(-1)^(1/
2)+1)*(-1)^(1/8)*2^(1/2)*(3^(1/8))^7*log(((((-528)*x^2+(-1308)*x+528)*((-1)^(
1/8))^4*(3^(1/8))^4+((-1308)*x^2+1584*x+1308))*((x^5+(-1)*x^3)^(1/4))^3+((((-
264)*x^3+(-654)*x^2+264*x)*(-1)^(1/2)+((-264)*x^3+(-654)*x^2+264*x))*((-1)^(1
/8))^3*2^(1/2)*(3^(1/8))^5+((654*x^3+(-792)*x^2+(-654)*x)*(-1)^(1/2)+(654*x^3
+(-792)*x^2+(-654)*x))*((-1)^(1/8))^7*2^(1/2)*3^(1/8))*((x^5+(-1)*x^3)^(1/4))
^2+(((-528)*x^4+(-1308)*x^3+528*x^2)*(-1)^(1/2)*((-1)^(1/8))^2*(3^(1/8))^6+(1
308*x^4+(-1584)*x^3+(-1308)*x^2)*(-1)^(1/2)*((-1)^(1/8))^6*(3^(1/8))^2)*(x^5+
(-1)*x^3)^(1/4)+(((109*x^6+(-264)*x^5+(-545)*x^4+264*x^3+109*x^2)*(-1)^(1/2)+
((-109)*x^6+264*x^5+545*x^4+(-264)*x^3+(-109)*x^2))*(-1)^(1/8)*2^(1/2)*(3^(1/
8))^7+((132*x^6+654*x^5+(-660)*x^4+(-654)*x^3+132*x^2)*(-1)^(1/2)+((-132)*x^6
+(-654)*x^5+660*x^4+654*x^3+(-132)*x^2))*((-1)^(1/8))^5*2^(1/2)*(3^(1/8))^3))
/(x^6+x^4+x^2)))))))))/24"

Maple does in less than 3 seconds also but gives result with lots of RootOf

anti:=int((1 - x^4)/((x^4 + x^2 + 1)*(x^5 - x^3)^(1/4)),x,method='trager'):
lprint(anti)
1/6*RootOf(_Z^8+2187)*ln(-108*(16*RootOf(_Z^8+2187)^9*x^4-24*RootOf(_Z^8+2187)^
9*x^3-16*RootOf(_Z^8+2187)^9*x^2+54*RootOf(_Z^8+2187)^7*(x^5-x^3)^(1/2)*x+162*
RootOf(_Z^8+2187)^6*(x^5-x^3)^(1/4)*x^2+1350*RootOf(_Z^8+2187)^5*x^4+243*RootOf
(_Z^8+2187)^5*x^3-1350*RootOf(_Z^8+2187)^5*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^
3)^(3/4)+24300*RootOf(_Z^8+2187)^3*(x^5-x^3)^(1/2)*x+72900*RootOf(_Z^8+2187)^2*
(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^8+2187)*x^4+56862*RootOf(_Z^8+2187)*x^3-\
28431*RootOf(_Z^8+2187)*x^2-39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2
*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-81
*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*ln(108*(16*RootOf(_Z^8+2187)^8*RootOf
(_Z^2+RootOf(_Z^8+2187)^2)*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+
2187)^8*x^3-16*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^8*x^2-54*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^6*x+1350*
RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+162*RootOf(_Z^8+2187)^
6*(x^5-x^3)^(1/4)*x^2+243*RootOf(_Z^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
x^3-1350*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)^4*x^2-8100*RootOf(
_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(
1/2)*RootOf(_Z^8+2187)^2*x+28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^4+72900*
RootOf(_Z^8+2187)^2*(x^5-x^3)^(1/4)*x^2+56862*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*x^2+39366*(x^5-x^3)^(3/4))/x^2/(
RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4-135*x-108)/(RootOf(_Z^8+2187)^4*x-2
*RootOf(_Z^8+2187)^4-81*x))-1/6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*ln(-108*(16*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^4-24*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^3-16*RootOf(_Z^2+RootOf
(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^8*x^2+54*RootOf
(_Z^2+RootOf(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)^5*RootOf(_Z^2+
RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-162*RootOf(_Z^2+RootOf(_Z
^8+2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-1350*RootOf(_Z^2+RootOf(_Z^
8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^4*x^4-243*RootOf(_Z
^8+2187)^4*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3+
1350*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^
8+2187)^4*x^2+8100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-24300*RootOf(_Z^2+RootOf
(_Z^8+2187)^2)*(x^5-x^3)^(1/2)*RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x+72900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^4+56862*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^3-28431*RootOf(_Z^2+RootOf(_Z^8+2187)*
RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+39366*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+
2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8
+2187)^4+81*x))+1/13122*RootOf(_Z^8+2187)^7*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*
RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*ln(-108*(26*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^11*x^4-39*RootOf(_Z^8+2187)^11*RootOf(
_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8
+2187)^2))*x^3-26*RootOf(_Z^8+2187)^11*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(
_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x^2+243*RootOf(_Z^2+
RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187
)^2))*RootOf(_Z^8+2187)^7*x^4-4050*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2
+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^3-\
243*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^7*x^2+4374*(x^5-x^3)^(1/2)*RootOf(_Z^8+
2187)^6*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-52488
*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^4+13122*RootOf(_Z^2+RootOf(_Z^8+
2187)^2)*RootOf(_Z^8+2187)^5*(x^5-x^3)^(1/4)*x^2-104976*RootOf(_Z^8+2187)^3*
RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+
RootOf(_Z^8+2187)^2))*x^3+52488*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^2+
RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*RootOf(_Z^8+2187)^3*x^2+
656100*RootOf(_Z^8+2187)^4*(x^5-x^3)^(3/4)-1968300*(x^5-x^3)^(1/2)*RootOf(_Z^8+
2187)^2*RootOf(_Z^2+RootOf(_Z^8+2187)*RootOf(_Z^2+RootOf(_Z^8+2187)^2))*x-\
5904900*RootOf(_Z^2+RootOf(_Z^8+2187)^2)*RootOf(_Z^8+2187)*(x^5-x^3)^(1/4)*x^2+
3188646*(x^5-x^3)^(3/4))/x^2/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+135*x
+108)/(RootOf(_Z^8+2187)^4*x-2*RootOf(_Z^8+2187)^4+81*x))

--Nasser

SubjectRepliesAuthor
o Re: Estimating the time required to compute an integral using Trager's algorithm

By: Nasser M. Abbasi on Tue, 14 Nov 2023

3Nasser M. Abbasi

rocksolid light 0.9.8
clearnet tor