Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

Your aim is high and to the right.


sci / sci.math.symbolic / FriCAS 1.3.10 on some algebraic integrands

SubjectAuthor
* FriCAS 1.3.10 on some algebraic integrandsclicliclic@freenet.de
+* Re: FriCAS 1.3.10 on some algebraic integrandsNasser M. Abbasi
|`* Re: FriCAS 1.3.10 on some algebraic integrandsclicliclic@freenet.de
| `- Re: FriCAS 1.3.10 on some algebraic integrandsclicliclic@freenet.de
`- Re: FriCAS 1.3.10 on some algebraic integrandsSam Blake

1
Subject: FriCAS 1.3.10 on some algebraic integrands
From: clicliclic@freenet.d
Newsgroups: sci.math.symbolic
Organization: Killfiles, Unlimited
Date: Fri, 9 Feb 2024 17:23 UTC
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!nntp-feed.chiark.greenend.org.uk!ewrotcd!news.killfile.org!.POSTED.port-92-200-68-158.dynamic.as20676.net!not-for-mail
From: nobody@nowhere.invalid (clicliclic@freenet.de)
Newsgroups: sci.math.symbolic
Subject: FriCAS 1.3.10 on some algebraic integrands
Date: Fri, 09 Feb 2024 18:23:54 +0100
Organization: Killfiles, Unlimited
Message-ID: <65C65FAA.DB8EB180@nowhere.invalid>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Injection-Info: flea.killfile.org; posting-host="port-92-200-68-158.dynamic.as20676.net:92.200.68.158";
logging-data="1077398"; mail-complaints-to="news@news.killfile.org"
X-Mailer: Mozilla 4.75 [de] (Win98; U)
X-Accept-Language: de
View all headers

I have been playing around with some old algebraic integrands in the
new version 1.3.10 of FriCAS on the web interface.

Sam Blake's pseudo-elliptic of April 2020 still gives:

integrate((x^4 - 1)*(x^4 + x^2 + 1)*sqrt(-x^4 + x^2 - 1)
/(x^4 + 1)^3, x)

>> Error detected within library code:
catdef: division by zero

perhaps because the radicand is negative everywhere on the real axis.

And an older and presumably truly elliptic case still fails:

integrate((5*x - 9*sqrt(6) + 26)
/((x^2 - 4*x - 50)*sqrt(x^3 - 30*x - 56)), x)

>> Error detected within library code:
catdef: division by zero

in the same manner, although the radicand is cubic here.

The following integrand by Legendre is still evaluated to six complex
logarithms:

integrate(x/((4 - x^3)*sqrt(1 - x^3)), x)

(((-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-3)^(1/2)+1)*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-2)*((-1)/432)^(1/6)*log(((7776*x^5*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(12*x^7+192*x^4+(-96)*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)
*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(2*((-1)/432)^(1/6)*log((((-7776)*x^5*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((-12)*x^7+(-192)*x^4+96*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-1)*(-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-1)*(-3)^(1/2)+1)*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)
^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64))))))))/36

.... even though a real expression for the antiderivative exists:

INT(x/((4 - x^3)*SQRT(1 - x^3)), x) =
2^(1/3)/18*(ATANH(SQRT(1 - x^3))
- 3*ATANH((1 + 2^(1/3)*x)/SQRT(1 - x^3))
- SQRT(3)*ATAN((2^(1/3) - 2^(2/3)*x - x^2)
/(SQRT(3)*2^(1/3)*SQRT(1 - x^3))))

Can't these complex logarithms be broken down similar to those for
integral 5.66 (#401) from the Timofeev suite?

And for the next integrand, FriCAS still produces unreasonable integers
in an arc tangent's argument:

integrate(1/((x + 1)*(x^3 + 2)^(1/3)), x)

(log(((21*x^4+(-6)*x^3+(-96)*x^2+(-60)*x+12)*((x^3+2)^(1/3))^2+(21*x^5+(-48)*x^3+102*x^2+228*x+96)*(x^3+2)^(1/3)+(22*x^6+6*x^5+(-48)*x^4+44*x^3+24*x^2+(-192)*x+(-140)))/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1))+2*3^(1/2)*atan(((98966744593197647869364591874*x^4+190053406517364372745124029472*x^3+(-642339750020464731448133545632)*x^2+(-1764382450892402509391037276448)*x+(-1072244631963565627440642667696))*3^(1/2)*((x^3+2)^(1/3))^2+((-45228634350310035870300951616)*x^5+(-453545129950193664973324584892)*x^4+(-726175722499147186465445363320)*x^3+735314591615271415729365586328*x^2+2230842809300000322439227290544*x+1190118508012558386973005239952)*3^(1/2)*(x^3+2)^(1/3)+(93292570833559435663132301885*x^6+382151535711085278859235047618*x^5+673924074224408772959625384792*x^4+889426563183087468015580290048*x^3+888876515195959220955879945824*x^2+351260598258508240019971964880*x+(-47674000995597211057816884304))*3^(1/2))/(236716304443694165237125394649*x^6+1013240117509374668590043803350*x^5+46796858328175763683008212928*x^4+(-2686291575945300326054363894472)*x^3+1085003586721431086608600126056*x^2+7625406903034897531937916271008*x+4664445860470002276943457906640)))/12

.... while the antiderivative can in fact be compactly stated as:

INT(1/((x + 1)*(x^3 + 2)^(1/3)), x) =
1/12*(- 3*LN((x^3 + 2)^(1/3) - x)
+ 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*x/(x^3 + 2)^(1/3))))
- 1/4*(LN((x + 2)^3 - (x^3 + 2))
- 3*LN((x + 2) - (x^3 + 2)^(1/3))
+ 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*((x + 2)/(x^3 + 2)^(1/3)))))

If the unreasonable numbers cannot be avoided earlier, they could at
least be removed by subtracting an arc tangent for a suitably chosen
value of x; both x = infinity and x = -2^(1/3) turn out to work well.

Finally I find that FriCAS version 1.3.10 still cannot solve:

integrate((3*x + 2)/((x + 6)*(9*x - 2)*(3*x^2 + 4)^(1/3)), x)

>> Error detected within library code:
integrate: implementation incomplete (residue poly has multiple
non-linear factors)

as first presented in the thread "Risch integrator troubles" of
Autumn/Winter 2019/2020. Why does this one remain too hard for an
algebraic Risch integrator, unlike the many cube-root integrands of
Goursat type now mastered by FriCAS?

Martin.

Subject: Re: FriCAS 1.3.10 on some algebraic integrands
From: Nasser M. Abbasi
Newsgroups: sci.math.symbolic
Organization: A noiseless patient Spider
Date: Fri, 9 Feb 2024 23:11 UTC
References: 1
Path: eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: nma@12000.org (Nasser M. Abbasi)
Newsgroups: sci.math.symbolic
Subject: Re: FriCAS 1.3.10 on some algebraic integrands
Date: Fri, 9 Feb 2024 17:11:50 -0600
Organization: A noiseless patient Spider
Lines: 128
Message-ID: <uq6bfm$2r75c$1@dont-email.me>
References: <65C65FAA.DB8EB180@nowhere.invalid>
Reply-To: nma@12000.org
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: base64
Injection-Date: Fri, 9 Feb 2024 23:11:50 -0000 (UTC)
Injection-Info: dont-email.me; posting-host="6d7333790582360b5511003c64c33eb6";
logging-data="2989228"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX193w20BCNjmKGoSdtoFvR9v"
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:102.0) Gecko/20100101
Thunderbird/102.15.1
Cancel-Lock: sha1:hSjCIDqNfpUSwlaCRE0V2Xj7Zdw=
Content-Language: en-US
In-Reply-To: <65C65FAA.DB8EB180@nowhere.invalid>
View all headers

On 2/9/2024 11:23 AM, clicliclic@freenet.de wrote:
>
> I have been playing around with some old algebraic integrands in the
> new version 1.3.10 of FriCAS on the web interface.
>
> Sam Blake's pseudo-elliptic of April 2020 still gives:
>
> integrate((x^4 - 1)*(x^4 + x^2 + 1)*sqrt(-x^4 + x^2 - 1)
> /(x^4 + 1)^3, x)
>
>>> Error detected within library code:
> catdef: division by zero
>
> perhaps because the radicand is negative everywhere on the real axis.
>
Fyi;
I've reported division by zero to Fricas newsgroup
https://groups.google.com/g/fricas-devel/c/6g0B53qX2TU
Btw, I do not think many Fricas developers read sci.math.symbolic
May be you could CC
fricas-devel@googlegroups.com
also. I do not know if it will work or not from your end
or if registration is needed or not. Sometimes I get direct email
from the above myself.
> And an older and presumably truly elliptic case still fails:
>
> integrate((5*x - 9*sqrt(6) + 26)
> /((x^2 - 4*x - 50)*sqrt(x^3 - 30*x - 56)), x)
>
>>> Error detected within library code:
> catdef: division by zero
>
> in the same manner, although the radicand is cubic here.
>
> The following integrand by Legendre is still evaluated to six complex
> logarithms:
>
> integrate(x/((4 - x^3)*sqrt(1 - x^3)), x)
>
> (((-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-3)^(1/2)+1)*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-2)*((-1)/432)^(1/6)*log(((7776*x^5*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(12*x^7+192*x^4+(-96)*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(2*((-1)/432)^(1/6)*log((((-7776)*x^5*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((-12)*x^7+(-192)*x^4+96*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-1)*(-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-1)*(-3)^(1/2)+1)*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64))))))))/36
>
> ... even though a real expression for the antiderivative exists:
>
> INT(x/((4 - x^3)*SQRT(1 - x^3)), x) =
> 2^(1/3)/18*(ATANH(SQRT(1 - x^3))
> - 3*ATANH((1 + 2^(1/3)*x)/SQRT(1 - x^3))
> - SQRT(3)*ATAN((2^(1/3) - 2^(2/3)*x - x^2)
> /(SQRT(3)*2^(1/3)*SQRT(1 - x^3))))
>
> Can't these complex logarithms be broken down similar to those for
> integral 5.66 (#401) from the Timofeev suite?
>
> And for the next integrand, FriCAS still produces unreasonable integers
> in an arc tangent's argument:
>
> integrate(1/((x + 1)*(x^3 + 2)^(1/3)), x)
>
> (log(((21*x^4+(-6)*x^3+(-96)*x^2+(-60)*x+12)*((x^3+2)^(1/3))^2+(21*x^5+(-48)*x^3+102*x^2+228*x+96)*(x^3+2)^(1/3)+(22*x^6+6*x^5+(-48)*x^4+44*x^3+24*x^2+(-192)*x+(-140)))/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1))+2*3^(1/2)*atan(((98966744593197647869364591874*x^4+190053406517364372745124029472*x^3+(-642339750020464731448133545632)*x^2+(-1764382450892402509391037276448)*x+(-1072244631963565627440642667696))*3^(1/2)*((x^3+2)^(1/3))^2+((-45228634350310035870300951616)*x^5+(-453545129950193664973324584892)*x^4+(-726175722499147186465445363320)*x^3+735314591615271415729365586328*x^2+2230842809300000322439227290544*x+1190118508012558386973005239952)*3^(1/2)*(x^3+2)^(1/3)+(93292570833559435663132301885*x^6+382151535711085278859235047618*x^5+673924074224408772959625384792*x^4+889426563183087468015580290048*x^3+888876515195959220955879945824*x^2+351260598258508240019971964880*x+(-47674000995597211057816884304))*3^(1/2))/(236716304443694165237125394649*x^6+1013240117509374668590043803350*x^5+46796858328175763683008212928*x^4+(-2686291575945300326054363894472)*x^3+1085003586721431086608600126056*x^2+7625406903034897531937916271008*x+4664445860470002276943457906640)))/12
>
> ... while the antiderivative can in fact be compactly stated as:
>
> INT(1/((x + 1)*(x^3 + 2)^(1/3)), x) =
> 1/12*(- 3*LN((x^3 + 2)^(1/3) - x)
> + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*x/(x^3 + 2)^(1/3))))
> - 1/4*(LN((x + 2)^3 - (x^3 + 2))
> - 3*LN((x + 2) - (x^3 + 2)^(1/3))
> + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*((x + 2)/(x^3 + 2)^(1/3)))))
>
> If the unreasonable numbers cannot be avoided earlier, they could at
> least be removed by subtracting an arc tangent for a suitably chosen
> value of x; both x = infinity and x = -2^(1/3) turn out to work well.
>
> Finally I find that FriCAS version 1.3.10 still cannot solve:
>
> integrate((3*x + 2)/((x + 6)*(9*x - 2)*(3*x^2 + 4)^(1/3)), x)
>
>>> Error detected within library code:
> integrate: implementation incomplete (residue poly has multiple
> non-linear factors)
>
> as first presented in the thread "Risch integrator troubles" of
> Autumn/Winter 2019/2020. Why does this one remain too hard for an
> algebraic Risch integrator, unlike the many cube-root integrands of
> Goursat type now mastered by FriCAS?
>
> Martin.

--Nasser

Subject: Re: FriCAS 1.3.10 on some algebraic integrands
From: clicliclic@freenet.d
Newsgroups: sci.math.symbolic
Organization: Killfiles, Unlimited
Date: Mon, 12 Feb 2024 17:52 UTC
References: 1 2
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!2.eu.feeder.erje.net!feeder.erje.net!weretis.net!feeder8.news.weretis.net!news.szaf.org!nntp-feed.chiark.greenend.org.uk!ewrotcd!news.eyrie.org!news.killfile.org!.POSTED.port-92-196-201-148.dynamic.as20676.net!not-for-mail
From: nobody@nowhere.invalid (clicliclic@freenet.de)
Newsgroups: sci.math.symbolic
Subject: Re: FriCAS 1.3.10 on some algebraic integrands
Date: Mon, 12 Feb 2024 18:52:07 +0100
Organization: Killfiles, Unlimited
Message-ID: <65CA5AC7.80C1AD39@nowhere.invalid>
References: <65C65FAA.DB8EB180@nowhere.invalid> <uq6bfm$2r75c$1@dont-email.me>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Injection-Info: flea.killfile.org; posting-host="port-92-196-201-148.dynamic.as20676.net:92.196.201.148";
logging-data="2454318"; mail-complaints-to="news@news.killfile.org"
X-Mailer: Mozilla 4.75 [de] (Win98; U)
X-Accept-Language: de
View all headers

"Nasser M. Abbasi" schrieb:
>
> On 2/9/2024 11:23 AM, clicliclic@freenet.de wrote:
> >
> > I have been playing around with some old algebraic integrands in the
> > new version 1.3.10 of FriCAS on the web interface.
> >
> > Sam Blake's pseudo-elliptic of April 2020 still gives:
> >
> > integrate((x^4 - 1)*(x^4 + x^2 + 1)*sqrt(-x^4 + x^2 - 1)
> > /(x^4 + 1)^3, x)
> >
> >>> Error detected within library code:
> > catdef: division by zero
> >
> > perhaps because the radicand is negative everywhere on the real
> > axis.
> >
>
> Fyi;
>
> I've reported division by zero to Fricas newsgroup
>
> https://groups.google.com/g/fricas-devel/c/6g0B53qX2TU
>
> Btw, I do not think many Fricas developers read sci.math.symbolic
>
> May be you could CC
>
> fricas-devel@googlegroups.com
>
> also. I do not know if it will work or not from your end
> or if registration is needed or not. Sometimes I get direct email
> from the above myself.

Thanks, will try this next time and see what happpens. In fact, I more
or less regularly follow the posts at <https://www.mail-archive.com/
fricas-devel@googlegroups.com>, and thus see Waldek occasionally
responding to <sci.math.symbolic> messages over there - so he's still
reading them. Dunno why he doesn't register at Eternal-September - he
even posted via Telekomunikacja Polska in April last year (I suppose
they offered a free trial which ran out).

I have verified that registration at <www.solani.org> also works, but
one may have to remind the operators via e-mail and wait for a week
until one receives a password.

And as stated before, I can e-mail a password for <news.killfile.org>
which I was able to guess to any one of the serious <sci.math.symbolic>
posters.

>
> > And an older and presumably truly elliptic case still fails:
> >
> > integrate((5*x - 9*sqrt(6) + 26)
> > /((x^2 - 4*x - 50)*sqrt(x^3 - 30*x - 56)), x)
> >
> >>> Error detected within library code:
> > catdef: division by zero
> >
> > in the same manner, although the radicand is cubic here.
> >
> > [...]
> >
> > And for the next integrand, FriCAS still produces unreasonable
> > integers in an arc tangent's argument:
> >
> > integrate(1/((x + 1)*(x^3 + 2)^(1/3)), x)
> >
> >
(log(((21*x^4+(-6)*x^3+(-96)*x^2+(-60)*x+12)*((x^3+2)^(1/3))^2+(21*x^5+(-48)*x^3+102*x^2+228*x+96)*(x^3+2)^(1/3)+(22*x^6+6*x^5+(-48)*x^4+44*x^3+24*x^2+(-192)*x+(-140)))/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1))+2*3^(1/2)*atan(((98966744593197647869364591874*x^4+190053406517364372745124029472*x^3+(-642339750020464731448133545632)*x^2+(-1764382450892402509391037276448)*x+(-1072244631963565627440642667696))*3^(1/2)*((x^3+2)^(1/3))^2+((-45228634350310035870300951616)*x^5+(-453545129950193664973324584892)*x^4+(-726175722499147186465445363320)*x^3+735314591615271415729365586328*x^2+2230842809300000322439227290544*x+1190118508012558386973005239952)*3^(1/2)*(x^3+2)^(1/3)+(93292570833559435663132301885*x^6+382151535711085278859235047618*x^5+673924074224408772959625384792*x^4+889426563183087468015580290048*x^3+888876515195959220955879945824*x^2+351260598258508240019971964880*x+(-47674000995597211057816884304))*3^(1/2))/(236716304443694165237125394649*x^6+1013240117509374668590043803350*x^5+46796858328175763683008212928*x^4+(-2686291575945300326054363894472)*x^3+1085003586721431086608600126056*x^2+7625406903034897531937916271008*x+4664445860470002276943457906640)))/12
> >
> > ... while the antiderivative can in fact be compactly stated as:
> >
> > INT(1/((x + 1)*(x^3 + 2)^(1/3)), x) =
> > 1/12*(- 3*LN((x^3 + 2)^(1/3) - x)
> > + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*x/(x^3 + 2)^(1/3))))
> > - 1/4*(LN((x + 2)^3 - (x^3 + 2))
> > - 3*LN((x + 2) - (x^3 + 2)^(1/3))
> > + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*((x + 2)/(x^3 + 2)^(1/3)))))
> >
> > If the unreasonable numbers cannot be avoided earlier, they could at
> > least be removed by subtracting an arc tangent for a suitably chosen
> > value of x; both x = infinity and x = -2^(1/3) turn out to work
> > well.

I also find that x = -1 works less well; perhaps one should simply try
x = infinity in all cases of algebraic antiderivatives with
unreasonable arc tangent arguments (but only if the radical stays
real?), and perhaps for reasonable arguments as well to avoid deciding
what's unreasonable.

> >
> > [...]
> >

Martin.

Subject: Re: FriCAS 1.3.10 on some algebraic integrands
From: Sam Blake
Newsgroups: sci.math.symbolic
Date: Tue, 13 Feb 2024 00:53 UTC
References: 1
X-Received: by 2002:ad4:5292:0:b0:68d:8f7e:e97 with SMTP id v18-20020ad45292000000b0068d8f7e0e97mr85124qvr.5.1707785584874;
Mon, 12 Feb 2024 16:53:04 -0800 (PST)
X-Received: by 2002:ac8:5c83:0:b0:42c:7af2:8b9f with SMTP id
r3-20020ac85c83000000b0042c7af28b9fmr308096qta.4.1707785584621; Mon, 12 Feb
2024 16:53:04 -0800 (PST)
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!weretis.net!feeder6.news.weretis.net!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!peer02.iad!feed-me.highwinds-media.com!news.highwinds-media.com!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: sci.math.symbolic
Date: Mon, 12 Feb 2024 16:53:04 -0800 (PST)
In-Reply-To: <65C65FAA.DB8EB180@nowhere.invalid>
Injection-Info: google-groups.googlegroups.com; posting-host=144.130.154.129; posting-account=wlWA4gkAAABfPzIzZZgzF-hX5pK428zY
NNTP-Posting-Host: 144.130.154.129
References: <65C65FAA.DB8EB180@nowhere.invalid>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <abfbe083-eb63-41de-a699-bcb2c1711535n@googlegroups.com>
Subject: Re: FriCAS 1.3.10 on some algebraic integrands
From: samuel.thomas.blake@gmail.com (Sam Blake)
Injection-Date: Tue, 13 Feb 2024 00:53:04 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Received-Bytes: 8600
View all headers

On Saturday, February 10, 2024 at 4:23:26 AM UTC+11, nob...@nowhere..invalid wrote:
> I have been playing around with some old algebraic integrands in the
> new version 1.3.10 of FriCAS on the web interface.
>
> Sam Blake's pseudo-elliptic of April 2020 still gives:
>
> integrate((x^4 - 1)*(x^4 + x^2 + 1)*sqrt(-x^4 + x^2 - 1)
> /(x^4 + 1)^3, x)
>
> >> Error detected within library code:
> catdef: division by zero
>
> perhaps because the radicand is negative everywhere on the real axis.
>
> And an older and presumably truly elliptic case still fails:
>
> integrate((5*x - 9*sqrt(6) + 26)
> /((x^2 - 4*x - 50)*sqrt(x^3 - 30*x - 56)), x)
>
> >> Error detected within library code:
> catdef: division by zero
>
> in the same manner, although the radicand is cubic here.
>
> The following integrand by Legendre is still evaluated to six complex
> logarithms:
>
> integrate(x/((4 - x^3)*sqrt(1 - x^3)), x)
>
> (((-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-3)^(1/2)+1)*((-1)/432)^(1/6)*log((((3888*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(((-6)*x^7+(-96)*x^4+48*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-2)*((-1)/432)^(1/6)*log(((7776*x^5*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+(12*x^7+192*x^4+(-96)*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(2*((-1)/432)^(1/6)*log((((-7776)*x^5*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((-12)*x^7+(-192)*x^4+96*x)*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((-1728)*x^7+(-1728)*x^4+3456*x)*(((-1)/432)^(1/6))^4+(72*x^8+504*x^5+(-576)*x^2)*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+(((-1)*(-3)^(1/2)+(-1))*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+3888*x^5)*(((-1)/432)^(1/6))^5+(360*x^6+1440*x^3+(-1152))*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+(6*x^7+96*x^4+(-48)*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+(((864*x^7+864*x^4+(-1728)*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+((36*x^8+252*x^5+(-288)*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64)))+((-1)*(-3)^(1/2)+1)*((-1)/432)^(1/6)*log(((((-3888)*x^5*(-3)^(1/2)+(-3888)*x^5)*(((-1)/432)^(1/6))^5+((-360)*x^6+(-1440)*x^3+1152)*(((-1)/432)^(1/6))^3+((6*x^7+96*x^4+(-48)*x)*(-3)^(1/2)+((-6)*x^7+(-96)*x^4+48*x))*((-1)/432)^(1/6))*((-1)*x^3+1)^(1/2)+((((-864)*x^7+(-864)*x^4+1728*x)*(-3)^(1/2)+(864*x^7+864*x^4+(-1728)*x))*(((-1)/432)^(1/6))^4+(((-36)*x^8+(-252)*x^5+288*x^2)*(-3)^(1/2)+((-36)*x^8+(-252)*x^5+288*x^2))*(((-1)/432)^(1/6))^2+((-1)*x^9+(-66)*x^6+72*x^3+(-32))))/(x^9+(-12)*x^6+48*x^3+(-64))))))))/36
>
> ... even though a real expression for the antiderivative exists:
>
> INT(x/((4 - x^3)*SQRT(1 - x^3)), x) =
> 2^(1/3)/18*(ATANH(SQRT(1 - x^3))
> - 3*ATANH((1 + 2^(1/3)*x)/SQRT(1 - x^3))
> - SQRT(3)*ATAN((2^(1/3) - 2^(2/3)*x - x^2)
> /(SQRT(3)*2^(1/3)*SQRT(1 - x^3))))
>
> Can't these complex logarithms be broken down similar to those for
> integral 5.66 (#401) from the Timofeev suite?
>
> And for the next integrand, FriCAS still produces unreasonable integers
> in an arc tangent's argument:
>
> integrate(1/((x + 1)*(x^3 + 2)^(1/3)), x)
>
> (log(((21*x^4+(-6)*x^3+(-96)*x^2+(-60)*x+12)*((x^3+2)^(1/3))^2+(21*x^5+(-48)*x^3+102*x^2+228*x+96)*(x^3+2)^(1/3)+(22*x^6+6*x^5+(-48)*x^4+44*x^3+24*x^2+(-192)*x+(-140)))/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1))+2*3^(1/2)*atan(((98966744593197647869364591874*x^4+190053406517364372745124029472*x^3+(-642339750020464731448133545632)*x^2+(-1764382450892402509391037276448)*x+(-1072244631963565627440642667696))*3^(1/2)*((x^3+2)^(1/3))^2+((-45228634350310035870300951616)*x^5+(-453545129950193664973324584892)*x^4+(-726175722499147186465445363320)*x^3+735314591615271415729365586328*x^2+2230842809300000322439227290544*x+1190118508012558386973005239952)*3^(1/2)*(x^3+2)^(1/3)+(93292570833559435663132301885*x^6+382151535711085278859235047618*x^5+673924074224408772959625384792*x^4+889426563183087468015580290048*x^3+888876515195959220955879945824*x^2+351260598258508240019971964880*x+(-47674000995597211057816884304))*3^(1/2))/(236716304443694165237125394649*x^6+1013240117509374668590043803350*x^5+46796858328175763683008212928*x^4+(-2686291575945300326054363894472)*x^3+1085003586721431086608600126056*x^2+7625406903034897531937916271008*x+4664445860470002276943457906640)))/12
>
> ... while the antiderivative can in fact be compactly stated as:
>
> INT(1/((x + 1)*(x^3 + 2)^(1/3)), x) =
> 1/12*(- 3*LN((x^3 + 2)^(1/3) - x)
> + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*x/(x^3 + 2)^(1/3))))
> - 1/4*(LN((x + 2)^3 - (x^3 + 2))
> - 3*LN((x + 2) - (x^3 + 2)^(1/3))
> + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*((x + 2)/(x^3 + 2)^(1/3)))))
>
> If the unreasonable numbers cannot be avoided earlier, they could at
> least be removed by subtracting an arc tangent for a suitably chosen
> value of x; both x = infinity and x = -2^(1/3) turn out to work well.
>
> Finally I find that FriCAS version 1.3.10 still cannot solve:
>
> integrate((3*x + 2)/((x + 6)*(9*x - 2)*(3*x^2 + 4)^(1/3)), x)
>
> >> Error detected within library code:
> integrate: implementation incomplete (residue poly has multiple
> non-linear factors)
>
> as first presented in the thread "Risch integrator troubles" of
> Autumn/Winter 2019/2020. Why does this one remain too hard for an
> algebraic Risch integrator, unlike the many cube-root integrands of
> Goursat type now mastered by FriCAS?
>
> Martin.

Mathematica 14 gets the last integral (via my open source package IntegrateAlgebraic)

In[1235]:= $VersionNumber

Out[1235]= 14.

In[1236]:= Integrate[(3*x + 2)/((x + 6)*(9*x - 2)*(3*x^2 + 4)^(1/3)), x]

Out[1236]= -((1/(28*14^(1/3)))*(2*Sqrt[3]*ArcTan[(10*14^(1/3) - 3*14^(1/3)*x + 7*(4 + 3*x^2)^(1/3))/
(7*Sqrt[3]*(4 + 3*x^2)^(1/3))] -
2*Log[-10*14^(1/3) + 3*14^(1/3)*x + 14*(4 + 3*x^2)^(1/3)] +
Log[100*14^(2/3) - 60*14^(2/3)*x + 9*14^(2/3)*x^2 +
196*(4 + 3*x^2)^(2/3) + 14*(10 - 3*x)*(56 + 42*x^2)^(1/3)]))

Subject: Re: FriCAS 1.3.10 on some algebraic integrands
From: clicliclic@freenet.d
Newsgroups: sci.math.symbolic
Organization: Killfiles, Unlimited
Date: Sat, 16 Mar 2024 06:19 UTC
References: 1 2 3
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!nntp-feed.chiark.greenend.org.uk!ewrotcd!news.killfile.org!.POSTED.port-92-200-11-203.dynamic.as20676.net!not-for-mail
From: nobody@nowhere.invalid (clicliclic@freenet.de)
Newsgroups: sci.math.symbolic
Subject: Re: FriCAS 1.3.10 on some algebraic integrands
Date: Sat, 16 Mar 2024 07:19:46 +0100
Organization: Killfiles, Unlimited
Message-ID: <65F53A02.49978186@nowhere.invalid>
References: <65C65FAA.DB8EB180@nowhere.invalid> <uq6bfm$2r75c$1@dont-email.me> <65CA5AC7.80C1AD39@nowhere.invalid>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Injection-Info: flea.killfile.org; posting-host="port-92-200-11-203.dynamic.as20676.net:92.200.11.203";
logging-data="1088173"; mail-complaints-to="news@news.killfile.org"
X-Mailer: Mozilla 4.75 [de] (Win98; U)
X-Accept-Language: de
View all headers

"clicliclic@freenet.de" schrieb:
>
> "Nasser M. Abbasi" schrieb:
> >
> > On 2/9/2024 11:23 AM, clicliclic@freenet.de wrote:
> > >
> > > And for the next integrand, FriCAS still produces unreasonable
> > > integers in an arc tangent's argument:
> > >
> > > integrate(1/((x + 1)*(x^3 + 2)^(1/3)), x)
> > >
> > > (log(((21*x^4+(-6)*x^3+(-96)*x^2+(-60)*x+12)*((x^3+2)^(1/3))^2+(21*x^5+(-48)*x^3+102*x^2+228*x+96)*(x^3+2)^(1/3)+(22*x^6+6*x^5+(-48)*x^4+44*x^3+24*x^2+(-192)*x+(-140)))/(x^6+6*x^5+15*x^4+20*x^3+15*x^2+6*x+1))+2*3^(1/2)*atan(((98966744593197647869364591874*x^4+190053406517364372745124029472*x^3+(-642339750020464731448133545632)*x^2+(-1764382450892402509391037276448)*x+(-1072244631963565627440642667696))*3^(1/2)*((x^3+2)^(1/3))^2+((-45228634350310035870300951616)*x^5+(-453545129950193664973324584892)*x^4+(-726175722499147186465445363320)*x^3+735314591615271415729365586328*x^2+2230842809300000322439227290544*x+1190118508012558386973005239952)*3^(1/2)*(x^3+2)^(1/3)+(93292570833559435663132301885*x^6+382151535711085278859235047618*x^5+673924074224408772959625384792*x^4+889426563183087468015580290048*x^3+888876515195959220955879945824*x^2+351260598258508240019971964880*x+(-47674000995597211057816884304))*3^(1/2))/(236716304443694165237125394649*x^6+1013240117509374668590043803350*x^5+46796858328175763683008212928*x^4+(-2686291575945300326054363894472)*x^3+1085003586721431086608600126056*x^2+7625406903034897531937916271008*x+4664445860470002276943457906640)))/12
> > >
> > > ... while the antiderivative can in fact be compactly stated as:
> > >
> > > INT(1/((x + 1)*(x^3 + 2)^(1/3)), x) =
> > > 1/12*(- 3*LN((x^3 + 2)^(1/3) - x)
> > > + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*x/(x^3 + 2)^(1/3))))
> > > - 1/4*(LN((x + 2)^3 - (x^3 + 2))
> > > - 3*LN((x + 2) - (x^3 + 2)^(1/3))
> > > + 2*SQRT(3)*ATAN(1/SQRT(3)*(1 + 2*((x + 2)/(x^3 + 2)^(1/3)))))
> > >
> > > If the unreasonable numbers cannot be avoided earlier, they could
> > > at least be removed by subtracting an arc tangent for a suitably
> > > chosen value of x; both x = infinity and x = -2^(1/3) turn out to
> > > work well.
>
> I also find that x = -1 works less well; perhaps one should simply try
> x = infinity in all cases of algebraic antiderivatives with
> unreasonable arc tangent arguments (but only if the radical stays
> real?), and perhaps for reasonable arguments as well to avoid deciding
> what's unreasonable.
>

I was wondering if it could be possible to determine automatically how
many FriCAS antiderivatives among the test results presented at

<https://www.12000.org/my_notes/CAS_integration_tests/index.htm>

involve integers with more than 5 or 10 decimal digits? Can a list of
these integrals be extracted?

Martin.

1

rocksolid light 0.9.8
clearnet tor