Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

BOFH excuse #35: working as designed


sci / sci.math.research / Re: quasi-central nets in C*-algebras

SubjectAuthor
* quasi-central nets in C*-algebrasvrunde@ualberta.ca
`- Re: quasi-central nets in C*-algebrasDavid Cullen

1
Subject: quasi-central nets in C*-algebras
From: vrunde@ualberta.ca
Newsgroups: sci.math.research
Organization: World Wide Maths
Date: Mon, 31 Jul 2017 21:15 UTC
Path: eternal-september.org!news.eternal-september.org!reader01.eternal-september.org!reader01.eternal-september.org!reader02.eternal-september.org!news.eternal-september.org!news.eternal-september.org!philo.eternal-september.org!.POSTED!not-for-mail
From: vrunde@ualberta.ca (vrunde@ualberta.ca)
Newsgroups: sci.math.research
Subject: quasi-central nets in C*-algebras
Date: Mon, 31 Jul 2017 15:15:30 -0600
Organization: World Wide Maths
Lines: 16
Sender: edgar@math.ohio-state.edu.invalid
Approved: G A Edgar <edgar@math.ohio-state.edu> moderator for sci.math.research
Message-ID: <310720171515305389%edgar@math.ohio-state.edu.invalid>
Reply-To: "vrunde@ualberta.ca" <vrunde@ualberta.ca>
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Injection-Info: philo.eternal-september.org; posting-host="91696c2f208d18e71f56a82e22c563e5";
logging-data="29046"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/yCMXXqZf7jT2TmV81h5qe"
User-Agent: Thoth/1.9.1 (Mac OS X)
Cancel-Lock: sha1:7hJr5C7LynMhTzTNA5bY+jFOqQo=
X-Original-Date: July 31, 2017 at 2:22:59 PM MDT
View all headers

Dear all,

Let's call a net ( c_\alpha )_\alpha in a C^* algebra A quasi-central if

  a c_\alpha - c_\alpha a \to 0  for each a in A.

Suppose that all c_\alphas are non-negtative (so that
c_\alpha^\frac{1}{2} exists for each \alpha). Is then the net (
c_\alpha^\frac{1}{2} )_\alpha in A also quasi-central. If ( c_\alpha
)_\alpha is bounded, the answer is easily seen to be true by Gelfand
theory, but what about the unbounded case?

Thanks for any hints!

Volker Runde.

Subject: Re: quasi-central nets in C*-algebras
From: David Cullen
Newsgroups: sci.math.research
Organization: World Wide Maths
Date: Tue, 8 Aug 2017 12:39 UTC
References: 1
Path: eternal-september.org!news.eternal-september.org!reader01.eternal-september.org!reader01.eternal-september.org!reader02.eternal-september.org!news.eternal-september.org!news.eternal-september.org!philo.eternal-september.org!.POSTED!not-for-mail
From: davecullen@gmail.com (David Cullen)
Newsgroups: sci.math.research
Subject: Re: quasi-central nets in C*-algebras
Date: Tue, 08 Aug 2017 06:39:43 -0600
Organization: World Wide Maths
Lines: 27
Sender: edgar@math.ohio-state.edu.invalid
Approved: G A Edgar <edgar@math.ohio-state.edu> moderator for sci.math.research
Message-ID: <080820170639439720%edgar@math.ohio-state.edu.invalid>
References: <310720171515305389%edgar@math.ohio-state.edu.invalid>
Reply-To: David Cullen <davecullen@gmail.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Injection-Info: philo.eternal-september.org; posting-host="facbdcd9067054adb32153a55ea72158";
logging-data="2306"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/nGjyNS/H5ruLPzQG8Dg7F"
User-Agent: Thoth/1.9.1 (Mac OS X)
Cancel-Lock: sha1:TbE4bInzF1NEYVFz1SdOhCvD1ic=
X-Original-Date: August 8, 2017 at 1:16:22 AM MDT
View all headers

Does this follow from prop II.8.1.5 (p. 165) in
http://wolfweb.unr.edu/homepage/bruceb/Cycr.pdf
? Applied once for each (a, alpha, epsilon > 0) with X := the closed real
interval [0, ||c_alpha||], and f(x) := sqrt(x) to obtain:
There exists delta > 0 with
||a((c_alpha)^(1/2)) - ((c_alpha)^(1/2))a|| < ||a||(epsilon)
whenever
||a(c_alpha) - (c_alpha)a|| < ||a||(delta)

On Monday, July 31, 2017 at 3:15:34 PM UTC-6, vru...@ualberta.ca wrote:
> Dear all,
>
> Let's call a net ( c_\alpha )_\alpha in a C^* algebra A quasi-central if
>
>   a c_\alpha - c_\alpha a \to 0  for each a in A.
>
> Suppose that all c_\alphas are non-negtative (so that
> c_\alpha^\frac{1}{2} exists for each \alpha). Is then the net (
> c_\alpha^\frac{1}{2} )_\alpha in A also quasi-central. If ( c_\alpha
> )_\alpha is bounded, the answer is easily seen to be true by Gelfand
> theory, but what about the unbounded case?
>
> Thanks for any hints!
>
> Volker Runde.

1

rocksolid light 0.9.8
clearnet tor