Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

Day of inquiry. You will be subpoenaed.


sci / sci.math.research / Heegner numbers's related issue

SubjectAuthor
o Heegner numbers's related issueapovolot@gmail.com

1
Subject: Heegner numbers's related issue
From: apovolot@gmail.com
Newsgroups: sci.math.research
Organization: World Wide Maths
Date: Wed, 19 Jul 2017 12:02 UTC
Path: eternal-september.org!news.eternal-september.org!reader01.eternal-september.org!reader01.eternal-september.org!reader02.eternal-september.org!news.eternal-september.org!news.eternal-september.org!philo.eternal-september.org!.POSTED!not-for-mail
From: apovolot@gmail.com (apovolot@gmail.com)
Newsgroups: sci.math.research
Subject: Heegner numbers's related issue
Date: Wed, 19 Jul 2017 06:02:38 -0600
Organization: World Wide Maths
Lines: 71
Sender: edgar@math.ohio-state.edu.invalid
Approved: G A Edgar <edgar@math.ohio-state.edu> moderator for sci.math.research
Message-ID: <190720170602382608%edgar@math.ohio-state.edu.invalid>
Reply-To: "apovolot@gmail.com" <apovolot@gmail.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Injection-Info: philo.eternal-september.org; posting-host="19f86b510ec7f438ebb28bee43dd7979";
logging-data="30030"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/o6P954mtRU16XswWSqwgn"
User-Agent: Thoth/1.9.1 (Mac OS X)
Cancel-Lock: sha1:FUdvpOJQiZ+msz4vHymRCIADo2s=
X-Original-Date: July 18, 2017 at 8:14:00 PM MDT
View all headers

I have noticed that out of 9 Heegner numbers:
{1,2,3,7,11,19,43,67,163}
the group of four leftmost of them and the group of four rightmost of
them could be constructed together on the similar recurrence principle:

a[n] = 5*(5*(EuilerPhi[((a[n-1]+a[n-5])/5 + 11)/5] + Prime[n-5]) - 11)
- a[n-4]

Simplify[RecurrenceTable[{a[n] ==5*(5*(EuilerPhi[((a[n-1]+a[n-5])/5 +
11)/5] + Prime[n-5]) - 11) - a[n-4],a[1]==1,a[2]==2,a[3]==3,a[4]==7,
a[5]==19},a[n],{n, 1, 8}]]

{1,2,3,7,19,43,67,163}

Of course above recurrence is not much productive since it doesn't
cover the fifth Heegner number and also requires five (out of total
eight covered Heegner's numbers) to be given in the recurrence's
initial conditions.

Unfortunately RSolve (see below) is not capable to find the explicit
direct solution for the above recurrence

$Assumptions = n \[Element] Integers

RSolve[{a[n]==-a[-4+n]+5(-11+5EulerPhi[1/5(11+1/5(a[-5+n]+a[-1+n]))]+Pri
me[-5+n]),a[1]==1,a[2]==2,a[3]==3,a[4]==7,a[5]==19},a[n],n]

However, I, seems to be, was able to figure out "by hand" some sort of
explicit direct solution, which gives four leftmost (as a[1], a[2],
a[3] and a[4]) and the four rightmost (as a[6], a[7], a[8] and a[9])
Heegner numbers:

a[n] =
EulerPhi[Prime[Mod[4,n]!!]]+Floor[n/5]+((1+Floor[n/5])^2)!*((1+Sqrt[3])^
(n-(1+2*(Floor[n/5]))!)-(1-Sqrt[3])^(n-(1+2*(Floor[n/5]))!))/(2*Sqrt[3])

Simplify[Table[EulerPhi[Prime[Mod[4,n]!!]]+Floor[n/5]+((1+Floor[n/5])^2)!
*((1+Sqrt[3])^(n-(1+2*(Floor[n/5]))!)-(1-Sqrt[3])^(n-(1+2*(Floor[n/5]))!)
)/(2*Sqrt[3]), {n,1,9}]]

{1,2,3,7,31,19,43,67,163}

(Note that unfortunately a[5]=31 in above is "off" - the actual Heegner
number for index 5 should be not 31 but 11 ...)

and as follows:

a[n-1] =
EulerPhi[Prime[Mod[4,(n-1)]!!]]+Floor[(n-1)/5]+((1+Floor[(n-1)/5])^2)!*(
(1+Sqrt[3])^((n-1)-(1+2*(Floor[(n-1)/5]))!)-(1-Sqrt[3])^((n-1)-(1+2*(Flo
or[(n-1)/5]))!))/(2*Sqrt[3])

a[n-4] =
EulerPhi[Prime[Mod[4,(n-4)]!!]]+Floor[(n-4)/5]+((1+Floor[(n-4)/5])^2)!*(
(1+Sqrt[3])^((n-4)-(1+2*(Floor[(n-4)/5]))!)-(1-Sqrt[3])^((n-4)-(1+2*(Flo
or[(n-4)/5]))!))/(2*Sqrt[3])

a[n-5]=
EulerPhi[Prime[Mod[4,(n-5)]!!]]+Floor[(n-5)/5]+((1+Floor[(n-5)/5])^2)!*(
(1+Sqrt[3])^((n-5)-(1+2*(Floor[(n-5)/5]))!)-(1-Sqrt[3])^((n-5)-(1+2*(Flo
or[(n-5)/5]))!))/(2*Sqrt[3])

Would it be possible to combine (utilize) above explicit and recurrent
formulas (please keep in mind that indexes for the last four Heegner
numbers are off by one if to compare explicit and recurrent formulas)
towards deriving (either explicit or recurrent) formula which would
cover all nine Heegner numbers?

Thanks,
Alexander R. Povolotsky

1

rocksolid light 0.9.8
clearnet tor