Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

BOFH excuse #148: Insert coin for new game


sci / sci.math.research / Super-modularity preserved by Expectations?

SubjectAuthor
o Super-modularity preserved by Expectations?patrick

1
Subject: Super-modularity preserved by Expectations?
From: patrick
Newsgroups: sci.math.research
Organization: World Wide Maths
Date: Thu, 13 Jul 2017 20:26 UTC
Path: eternal-september.org!news.eternal-september.org!reader01.eternal-september.org!reader01.eternal-september.org!reader02.eternal-september.org!news.eternal-september.org!news.eternal-september.org!philo.eternal-september.org!.POSTED!not-for-mail
From: plni@yahoo.com (patrick)
Newsgroups: sci.math.research
Subject: Super-modularity preserved by Expectations?
Date: Thu, 13 Jul 2017 14:26:34 -0600
Organization: World Wide Maths
Lines: 10
Sender: edgar@math.ohio-state.edu.invalid
Approved: G A Edgar <edgar@math.ohio-state.edu> moderator for sci.math.research
Message-ID: <130720171426345010%edgar@math.ohio-state.edu.invalid>
Reply-To: patrick <plni@yahoo.com>
Mime-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Injection-Info: philo.eternal-september.org; posting-host="887e4686859f1da64ecc75ea63449649";
logging-data="4008"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19/sZE/XKRRnBUFza1XWQZ1"
User-Agent: Thoth/1.9.1 (Mac OS X)
Cancel-Lock: sha1:3tTJmHmZ2dJaz3o/AuG05NUAK4w=
X-Original-Date: July 13, 2017 at 9:00:56 AM MDT
View all headers

Consider a function $f(a,b)$ that is super-modular in $(a,b)$,
increasing in both variables and convex. Consider a random variable
$\tilde{a}$, We shall denote by $E_a$ the expectations of $f$ wrt to
$\tilde{a}$, assumed to exist.

Is it true that $E_a(f(\tilde{a},b)$ is super-modular in
$(E(\tilde{a},b)$?

Thanks in advance for any hint!

1

rocksolid light 0.9.8
clearnet tor