Rocksolid Light

News from da outaworlds

mail  files  register  groups  login

Message-ID:  

BOFH excuse #199: the curls in your keyboard cord are losing electricity.


comp / comp.lang.python / Re: Predicting an object over an pretrained model is not working

SubjectAuthor
o Re: Predicting an object over an pretrained model is not workingThomas Passin

1
Subject: Re: Predicting an object over an pretrained model is not working
From: Thomas Passin
Newsgroups: comp.lang.python
Date: Tue, 30 Jul 2024 21:45 UTC
References: 1 2 3 4
Path: eternal-september.org!news.eternal-september.org!feeder3.eternal-september.org!fu-berlin.de!uni-berlin.de!not-for-mail
From: list1@tompassin.net (Thomas Passin)
Newsgroups: comp.lang.python
Subject: Re: Predicting an object over an pretrained model is not working
Date: Tue, 30 Jul 2024 17:45:20 -0400
Lines: 278
Message-ID: <mailman.50.1722376937.2981.python-list@python.org>
References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
<263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net>
<CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com>
<e55832f1-552f-43b8-849f-2a79e77ecbcc@tompassin.net>
Mime-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: news.uni-berlin.de n9jeFKzZwx0NFiICIgQpugG5NYQXwH/bLq5Pqj2CnfAA==
Cancel-Lock: sha1:M94y3DkL4R+kdPT8c/uTd0cMD0k= sha256:5qCs96a2vMKE4dAPPu4q6nBmFkmotPe/LM6vfcCbLJs=
Return-Path: <list1@tompassin.net>
X-Original-To: python-list@python.org
Delivered-To: python-list@mail.python.org
Authentication-Results: mail.python.org; dkim=pass
reason="2048-bit key; unprotected key"
header.d=tompassin.net header.i=@tompassin.net header.b=uPOoSnlk;
dkim-adsp=pass; dkim-atps=neutral
X-Spam-Status: OK 0.002
X-Spam-Evidence: '*H*': 1.00; '*S*': 0.00; 'def': 0.04; 'knows': 0.04;
'image.': 0.07; '"""': 0.09; 'anyway,': 0.09; 'cell.': 0.09;
'code?': 0.09; 'compute': 0.09; 'coordinate': 0.09; 'ok,': 0.09;
'output:': 0.09; 'skip:x 10': 0.09; 'subject:not': 0.09;
'tensorflow': 0.09; 'threshold': 0.09; 'url:mailman': 0.15; '(1,':
0.16; '2024': 0.16; '=\xc2\xa0': 0.16; 'annotated': 0.16; 'args:':
0.16; 'box.': 0.16; 'dict': 0.16; 'input.': 0.16; 'possible?':
0.16; 'predicts': 0.16; 'received:10.0.0': 0.16; 'received:64.90':
0.16; 'received:64.90.62': 0.16; 'received:64.90.62.162': 0.16;
'received:dreamhost.com': 0.16; 'skip:5 20': 0.16;
'subject:model': 0.16; 'subject:working': 0.16; 'value?': 0.16;
'wrote:': 0.16; 'problem': 0.16; 'code.': 0.17; "can't": 0.17;
'calls': 0.19; 'figure': 0.19; 'implement': 0.19; 'pm,': 0.19;
'to:addr:python-list': 0.20; 'all,': 0.20; 'input': 0.21; 'skip:_
10': 0.22; "what's": 0.22; 'code': 0.23; 'skip:p 30': 0.23; 'url-
ip:188.166.95.178/32': 0.25; 'url-ip:188.166.95/24': 0.25;
'url:listinfo': 0.25; 'url-ip:188.166/16': 0.25; 'classes': 0.26;
'object': 0.26; 'else': 0.27; 'function': 0.27; 'expect': 0.28;
'output': 0.28; 'header:User-Agent:1': 0.30; 'code,': 0.31; 'url-
ip:188/8': 0.31; 'objects': 0.32; 'python-list': 0.32;
'received:10.0': 0.32; 'received:mailchannels.net': 0.32;
'received:relay.mailchannels.net': 0.32; "wouldn't": 0.32; 'skip:2
10': 0.32; 'but': 0.32; 'able': 0.34; 'skip:" 20': 0.34; 'header
:In-Reply-To:1': 0.34; 'trying': 0.35; 'one.': 0.35; 'skip:2 20':
0.35; 'following': 0.35; 'fix': 0.36; 'target': 0.36; 'source':
0.36; 'those': 0.36; "skip:' 10": 0.37; 'really': 0.37; 'using':
0.37; "it's": 0.37; 'class': 0.37; 'two': 0.39; 'added': 0.39;
'single': 0.39; 'otherwise': 0.39; '(with': 0.39; 'processed':
0.40; 'skip:( 30': 0.40; 'want': 0.40; 'skip:0 20': 0.61; 'skip:o
10': 0.61; 'skip:\xc2 10': 0.62; 'subject': 0.63; 'skip:m 20':
0.63; 'skip:b 10': 0.63; 'skip:k 10': 0.64; 'key': 0.64; 'skip:r
20': 0.64; 'probability': 0.64; 'your': 0.64; 'box': 0.65; 'skip:t
20': 0.66; 'skip:1 20': 0.67; 'areas': 0.67; 'maximum': 0.67;
'header:Received:6': 0.67; 'received:64': 0.67; 'know.': 0.68;
'order': 0.69; 'model.': 0.69; 'prediction': 0.69; 'skip:y 30':
0.69; 'strong': 0.69; 'skip:4 10': 0.75; 'skip:y 10': 0.76;
'detection': 0.76; 'documented': 0.76; 'database': 0.80;
'position': 0.81; 'represented': 0.84; 'subject:over': 0.84;
'\xc3\xa9crit\xc2\xa0:': 0.84; 'greater': 0.91
X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net
ARC-Seal: i=1; s=arc-2022; d=mailchannels.net; t=1722375921; a=rsa-sha256;
cv=none;
b=R7/ta1CKJY6ahTs23f8tUoEuysbccwouYR4A+B62Qa7ary92czGfDOJMHEKdYT/oROk0zP
2p0wsROmWIV9M9xrytiAg9JGimKL+bVpjBLgbOs2aeMCEzkbNckY/oj7OVUfkWIixQRISq
Pl9isvZaSZGq/ZZ7r3HnZMU0vCiepF9UXvqSNXNrAB7i/7G7+C0s1yMfGmqzmvxpLJE6Gg
5YdDoPmI8a7WwidoX5HbAAnc4oo6B9Lk/DxbAeUWuSFECzfazeL1kE8FydE1L/zR9EKQuJ
lG9qhumapFQq1hMPN/ddqULqYUlm6V4sui55twVla4P9ifqIPrz7ZF2+sB19pg==
ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
d=mailchannels.net; s=arc-2022; t=1722375921;
h=from:from:reply-to:subject:subject:date:date:message-id:message-id:
to:to:cc:mime-version:mime-version:content-type:content-type:
content-transfer-encoding:content-transfer-encoding:
in-reply-to:in-reply-to:references:references:dkim-signature;
bh=jHVbcIEKrxNFwWCQZQEFIgxdhD2GcLcqqwmMRpgnBQM=;
b=bSc67WhFzdlf6a5q4u4Lvk5BRKNhhxgna2+8lOPATyLZNsmdl5CuoOX4A1j9ll/TjceHIc
wPPakTWChoe1SoZTgK+eLYrFKNBwI+kbkxYG4qALps4E4nTyESa1Yn2XtipvzPeTpy7769
lZdYUhQPubiQeJG3MrHdKyk00nw1TvyO0+iJY9JB+qMuF8nnOif5fQO8QgKHElZsvFeYbl
kFZFPdepPLwGMpFUiZcAL7/2eVI6Z8Zw7jM4m71JU8Bv77fqJeHSrZNTsMYKhIvKUcyT+d
rWKUVD6QwJsUNYRKWmwdIZ7mIFCIRjazy1BSOQGu9/CMobHmvq2TBQFIiemHfg==
ARC-Authentication-Results: i=1; rspamd-5c76f4b4d4-gbwng;
auth=pass smtp.auth=dreamhost smtp.mailfrom=list1@tompassin.net
X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net
X-MC-Relay: Neutral
X-MailChannels-SenderId: dreamhost|x-authsender|tpassin@tompassin.net
X-MailChannels-Auth-Id: dreamhost
X-Left-Chief: 49b2ce7972010046_1722375921648_4002512632
X-MC-Loop-Signature: 1722375921648:2361207143
X-MC-Ingress-Time: 1722375921648
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=tompassin.net;
s=dreamhost; t=1722375921;
bh=jHVbcIEKrxNFwWCQZQEFIgxdhD2GcLcqqwmMRpgnBQM=;
h=Date:Subject:To:From:Content-Type:Content-Transfer-Encoding;
b=uPOoSnlkb5BrItgRRao6YwUOeGNCSUBYfgXXXUEL+dzJKzNT7XdLdk5YbStWct3yE
VvpJbS5ug3OghsNXMef3W8ThvmNhoB2XmrNBeMQhfOXzWKQHzNPOMwKNXttRpf0adk
POYlKXkOtxhUAuO5gNwA01735Sa8Sv8QwdJVhSX4uU/Bcj8+qtIewbxaObPg8mzEq0
hwA9NeLfkElH7imE0HaIIjZNOfsCxRzDdYuLSbIMWC2NPWGJteqMlrtQCC0Mj3qodx
7WA4jDg2FiNMsKjrxTJo+Zt18KQgApROUO6N6Ixp6ZbKwBFdgcFW2b0kP/ikliL9Ji
4wpr5GSxkt3yA==
User-Agent: Mozilla Thunderbird
Content-Language: en-US
In-Reply-To: <CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com>
X-BeenThere: python-list@python.org
X-Mailman-Version: 2.1.39
Precedence: list
List-Id: General discussion list for the Python programming language
<python-list.python.org>
List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>,
<mailto:python-list-request@python.org?subject=unsubscribe>
List-Archive: <https://mail.python.org/pipermail/python-list/>
List-Post: <mailto:python-list@python.org>
List-Help: <mailto:python-list-request@python.org?subject=help>
List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>,
<mailto:python-list-request@python.org?subject=subscribe>
X-Mailman-Original-Message-ID: <e55832f1-552f-43b8-849f-2a79e77ecbcc@tompassin.net>
X-Mailman-Original-References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
<263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net>
<CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com>
View all headers

On 7/30/2024 4:49 PM, marc nicole wrote:
> OK, but how's the probability of small_ball greater than others? I can't
> find it anyway, what's its value?

It's your code. I wouldn't know. I suppose it's represented somewhere in
all those parameters. You need to understand what those function calls
are returning. It's documented somewhere, right?

And you really do need to know the probabilities of the competing images
because otherwise you won't know how confident you can be that the
identification is a strong one.

> Le mar. 30 juil. 2024 à 21:37, Thomas Passin via Python-list
> <python-list@python.org <mailto:python-list@python.org>> a écrit :
>
> On 7/30/2024 2:18 PM, marc nicole via Python-list wrote:
> > Hello all,
> >
> > I want to predict an object by given as input an image and want
> to have my
> > model be able to predict the label. I have trained a model using
> tensorflow
> > based on annotated database where the target object to predict
> was added to
> > the pretrained model. the code I am using is the following where
> I set the
> > target object image as input and want to have the prediction output:
> >
> >
> >
> >
> >
> >
> >
> >
> > class MultiObjectDetection():
> >
> >      def __init__(self, classes_name):
> >
> >          self._classes_name = classes_name
> >          self._num_classes = len(classes_name)
> >
> >          self._common_params = {'image_size': 448, 'num_classes':
> > self._num_classes,
> >                  'batch_size':1}
> >          self._net_params = {'cell_size': 7, 'boxes_per_cell':2,
> > 'weight_decay': 0.0005}
> >          self._net = YoloTinyNet(self._common_params,
> self._net_params,
> > test=True)
> >
> >      def predict_object(self, image):
> >          predicts = self._net.inference(image)
> >          return predicts
> >
> >      def process_predicts(self, resized_img, predicts, thresh=0.2):
> >          """
> >          process the predicts of object detection with one image
> input.
> >
> >          Args:
> >              resized_img: resized source image.
> >              predicts: output of the model.
> >              thresh: thresh of bounding box confidence.
> >          Return:
> >              predicts_dict: {"stick": [[x1, y1, x2, y2, scores1],
> [...]]}.
> >          """
> >          cls_num = self._num_classes
> >          bbx_per_cell = self._net_params["boxes_per_cell"]
> >          cell_size = self._net_params["cell_size"]
> >          img_size = self._common_params["image_size"]
> >          p_classes = predicts[0, :, :, 0:cls_num]
> >          C = predicts[0, :, :, cls_num:cls_num+bbx_per_cell] # two
> > bounding boxes in one cell.
> >          coordinate = predicts[0, :, :, cls_num+bbx_per_cell:] # all
> > bounding boxes position.
> >
> >          p_classes = np.reshape(p_classes, (cell_size, cell_size,
> 1, cls_num))
> >          C = np.reshape(C, (cell_size, cell_size, bbx_per_cell, 1))
> >
> >          P = C * p_classes # confidencefor all classes of all
> bounding
> > boxes (cell_size, cell_size, bounding_box_num, class_num) = (7, 7, 2,
> > 1).
> >
> >          predicts_dict = {}
> >          for i in range(cell_size):
> >              for j in range(cell_size):
> >                  temp_data = np.zeros_like(P, np.float32)
> >                  temp_data[i, j, :, :] = P[i, j, :, :]
> >                  position = np.argmax(temp_data) # refer to the class
> > num (with maximum confidence) for every bounding box.
> >                  index = np.unravel_index(position, P.shape)
> >
> >                  if P[index] > thresh:
> >                      class_num = index[-1]
> >                      coordinate = np.reshape(coordinate, (cell_size,
> > cell_size, bbx_per_cell, 4)) # (cell_size, cell_size,
> > bbox_num_per_cell, coordinate)[xmin, ymin, xmax, ymax]
> >                      max_coordinate = coordinate[index[0],
> index[1], index[2], :]
> >
> >                      xcenter = max_coordinate[0]
> >                      ycenter = max_coordinate[1]
> >                      w = max_coordinate[2]
> >                      h = max_coordinate[3]
> >
> >                      xcenter = (index[1] + xcenter) *
> (1.0*img_size /cell_size)
> >                      ycenter = (index[0] + ycenter) *
> (1.0*img_size /cell_size)
> >
> >                      w = w * img_size
> >                      h = h * img_size
> >                      xmin = 0 if (xcenter - w/2.0 < 0) else
> (xcenter - w/2.0)
> >                      ymin = 0 if (xcenter - w/2.0 < 0) else
> (ycenter - h/2.0)
> >                      xmax = resized_img.shape[0] if (xmin + w) >
> > resized_img.shape[0] else (xmin + w)
> >                      ymax = resized_img.shape[1] if (ymin + h) >
> > resized_img.shape[1] else (ymin + h)
> >
> >                      class_name = self._classes_name[class_num]
> >                      predicts_dict.setdefault(class_name, [])
> >                      predicts_dict[class_name].append([int(xmin),
> > int(ymin), int(xmax), int(ymax), P[index]])
> >
> >          return predicts_dict
> >
> >      def non_max_suppress(self, predicts_dict, threshold=0.5):
> >          """
> >          implement non-maximum supression on predict bounding boxes.
> >          Args:
> >              predicts_dict: {"stick": [[x1, y1, x2, y2, scores1],
> [...]]}.
> >              threshhold: iou threshold
> >          Return:
> >              predicts_dict processed by non-maximum suppression
> >          """
> >          for object_name, bbox in predicts_dict.items():
> >              bbox_array = np.array(bbox, dtype=np.float)
> >              x1, y1, x2, y2, scores = bbox_array[:,0],
> bbox_array[:,1],
> > bbox_array[:,2], bbox_array[:,3], bbox_array[:,4]
> >              areas = (x2-x1+1) * (y2-y1+1)
> >              order = scores.argsort()[::-1]
> >              keep = []
> >              while order.size > 0:
> >                  i = order[0]
> >                  keep.append(i)
> >                  xx1 = np.maximum(x1[i], x1[order[1:]])
> >                  yy1 = np.maximum(y1[i], y1[order[1:]])
> >                  xx2 = np.minimum(x2[i], x2[order[1:]])
> >                  yy2 = np.minimum(y2[i], y2[order[1:]])
> >                  inter = np.maximum(0.0, xx2-xx1+1) *
> np.maximum(0.0, yy2-yy1+1)
> >                  iou = inter/(areas[i]+areas[order[1:]]-inter)
> >                  indexs = np.where(iou<=threshold)[0]
> >                  order = order[indexs+1]
> >              bbox = bbox_array[keep]
> >              predicts_dict[object_name] = bbox.tolist()
> >              predicts_dict = predicts_dict
> >          return predicts_dict
> >
> >
> >
> > class_names = ["aeroplane", "bicycle", "bird", "boat", "bottle",
> > "bus", "car", "cat", "chair", "cow", "diningtable",
> >                     "dog", "horse", "motorbike", "person",
> > "pottedplant", "sheep", "sofa", "train", "tvmonitor",
> >                     "small_ball"]
> > modelFile = ('models\\train\\model.ckpt-0')
> > track_object = "small_ball"print("object detection and tracking...")
> >
> > multiObjectDetect = MultiObjectDetection(IP, class_names)
> > image = tf.placeholder(tf.float32, (1, 448, 448, 3))
> > object_predicts = multiObjectDetect.predict_object(image)
> >
> >
> >
> > sess = tf.Session()
> > saver = tf.train.Saver(multiObjectDetect._net.trainable_collection)
> >
> >
> > saver.restore(sess, modelFile)
> >
> > index = 0while 1:
> >
> >      src_img = cv2.imread("./weirdobject.jpg")
> >      resized_img = cv2.resize(src_img, (448, 448))
> >
> >      np_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB)
> >      np_img = np_img.astype(np.float32)
> >      np_img = np_img / 255.0 * 2 - 1
> >      np_img = np.reshape(np_img, (1, 448, 448, 3))
> >
> >
> >      np_predict = sess.run(object_predicts, feed_dict={image:
> np_img})
> >      predicts_dict =
> multiObjectDetect.process_predicts(resized_img, np_predict)
> >      predicts_dict =
> multiObjectDetect.non_max_suppress(predicts_dict)
> >
> >      print ("predict dict = ", predicts_dict)
> >
> >
> >
> >
> >
> >
> >
> > The problem with this code is that the predicts_dict returns:
> >
> >
> >
> > predict dict =  {'sheep': [[233.0, 92.0, 448.0, -103.0,
> > 5.3531270027160645], [167.0, 509.0, 209.0, 101.0, 4.947688579559326],
> > [0.0, 0.0, 448.0, 431.0, 3.393721580505371]], 'horse': [[374.0, 33.0,
> > 282.0, 448.0, 5.277851581573486], [135.0, 688.0, -33.0, -14.0,
> > 3.5144259929656982], [1.0, 117.0, 112.0, -138.0, 2.656987190246582]],
> > 'bicycle': [[461.0, 781.0, 154.0, -381.0, 5.918102741241455], [70.0,
> > 344.0, 391.0, -138.0, 3.031444787979126], [378.0, 497.0, 46.0, 149.0,
> > 2.7629122734069824], [541.0, 583.0, 69.0, 307.0, 2.7170517444610596],
> > [323.0, 22.0, 336.0, 448.0, 1.608760952949524]], 'bottle': [[390.0,
> > 218.0, -199.0, 448.0, 4.582971096038818], [0.0, 0.0, 448.0, -410.0,
> > 0.9097045063972473]], 'sofa': [[346.0, 102.0, 323.0, -38.0,
> > 2.371835947036743]], 'dog': [[319.0, 254.0, -282.0, 373.0,
> > 4.022889137268066]], 'cat': [[63.0, -195.0, 365.0, -92.0,
> > 3.5134828090667725]], 'person': [[22.0, -122.0, 154.0, 448.0,
> > 3.927537441253662], [350.0, 155.0, -36.0, -445.0, 2.679833173751831],
> > [119.0, 416.0, -43.0, 292.0, 0.9529445171356201], [251.0, 445.0,
> > 225.0, 188.0, 0.9001350402832031]], 'train': [[329.0, 485.0, -24.0,
> > -235.0, 2.7050414085388184], [483.0, 362.0, 237.0, -86.0,
> > 2.555817127227783], [13.0, 365.0, 373.0, 448.0, 0.6229299902915955]],
> > 'small_ball': [[217.0, 737.0, 448.0, -315.0, 1.739920973777771],
> > [117.0, 283.0, 153.0, 122.0, 1.5690066814422607]], 'boat': [[164.0,
> > 805.0, 34.0, -169.0, 4.972668170928955], [0.0, 0.0, 397.0, 69.0,
> > 2.353729486465454], [302.0, 605.0, 15.0, -22.0, 2.0259625911712646]],
> > 'aeroplane': [[470.0, 616.0, -305.0, -37.0, 3.431873321533203], [0.0,
> > 0.0, 448.0, -72.0, 2.836672306060791]], 'bus': [[0.0, 0.0, -101.0,
> > -280.0, 1.2078320980072021]], 'pottedplant': [[620.0, -268.0, -124.0,
> > 418.0, 2.158564805984497], [0.0, 0.0, 448.0, -779.0,
> > 1.6623022556304932]], 'tvmonitor': [[0.0, 0.0, 448.0, 85.0,
> > 3.238999128341675], [240.0, 772.0, 200.0, 91.0, 1.7443398237228394],
> > [546.0, 155.0, 448.0, 448.0, 1.1334525346755981], [107.0, 441.0,
> > 432.0, 219.0, 0.5971617698669434]], 'chair': [[470.0, -187.0, 106.0,
> > 235.0, 3.8548083305358887], [524.0, 740.0, -103.0, 99.0,
> > 3.636549234390259], [0.0, 0.0, 275.0, -325.0, 3.0997846126556396],
> > [711.0, -231.0, -146.0, 392.0, 2.205275535583496]], 'diningtable':
> > [[138.0, -310.0, 111.0, 448.0, 4.660728931427002], [317.0, -66.0,
> > 313.0, 6.0, 4.535496234893799], [0.0, 0.0, -41.0, 175.0,
> > 1.8571208715438843], [21.0, -92.0, 76.0, 172.0, 1.2035608291625977],
> > [0.0, 0.0, 448.0, -250.0, 1.00322687625885]], 'car': [[312.0, 232.0,
> > 132.0, 309.0, 3.205225706100464], [514.0, -76.0, 218.0, 448.0,
> > 1.4289973974227905], [0.0, 0.0, 448.0, 142.0, 0.7124998569488525]]}
> >
> >
> > WHile I expect only the dict to contain the small_ball key
> >
> >
> >
> > How's that is possible? where's the prediction output?How to fix
> the code?
>
> Without trying to figure out all that code, why would you expect only
> results for a single key?  An ML system is going to compute
> probabilities and parameters for all objects it knows about (presumably
> subject to some threshold).
>
> --
> https://mail.python.org/mailman/listinfo/python-list
> <https://mail.python.org/mailman/listinfo/python-list>
>


Click here to read the complete article
1

rocksolid light 0.9.8
clearnet tor